

40V 200mA Low IQ, Low Dropout LDO

1 Features

- Wide Input Voltage Range: up to 40V
- Output Current: 200mA
- Standard Fixed Output Voltage Options
 3.0V, 3.3V, 5.0V
- Low IQ: 2.5µA Typically
- ±2% Output Voltage Accuracy
- Temperature Coefficient: 50 ppm/°C
- High PSRR: 70dB@1kHz
- Output Short Circuit Protection
- Thermal Shutdown Protection
- Available Packages
 - SOT23-3, SOT23-5 and SOT89-3

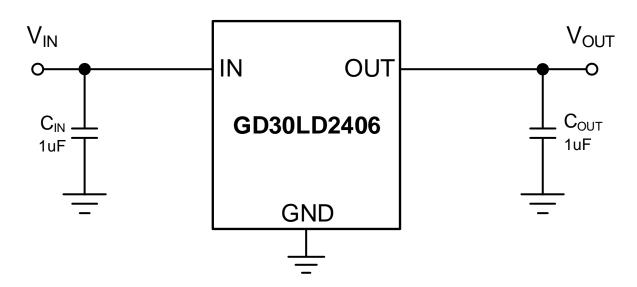
2 Applications

- Audio/Video Equipment
- Home Appliance
- Battery Powered Equipment

3 Description

The GD30LD2406 is a low dropout linear voltage regulator that features high input voltage, low dropout voltage, ultralow operating current. With quiescent current as low as 2.5μ A, the GD30LD2406 is ideal for battery-powered equipment. By controlling the EN pin on the device, the output can be turned off, and the power consumption after shutdown is only below 1μ A.

Additionally, it also features built-in current limiting, overtemperature protection, and short-circuit protection functions.

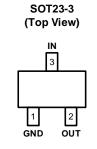

The GD30LD2406 is available in SOT23-3, SOT23-5 and SOT89-3 packages.

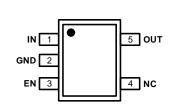
Device Information¹

PART NUMBER	PACKAGE	BODY SIZE
	SOT23-3	2.92mm x 1.60mm
GD30LD2406	SOT23-5	2.92mm x 1.60mm
	SOT89-3	4.50mm x 2.45mm

1. For all available packages, see the *Package Information* and *Ordering Information* at the end of data sheet.

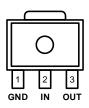
Simplified Application Schematic


Table of Contents


1	Featu	res	.1		
2	Appli	cations	.1		
3	Desc	ription	.1		
Tab	le of C	ontents	. 2		
4	Devic	e Overview	. 3		
	4.1	Pinout and Pin Assignment	3		
	4.2	Pin Description	3		
5	Parar	neter Information	. 4		
	5.1	Absolute Maximum Ratings	4		
	5.2	Recommended Operation Conditions	4		
	5.3	Electrical Sensitivity	4		
	5.4	Thermal Resistance	4		
	5.5	Electrical Characteristics	5		
6	Funct	tional Description	. 6		
	6.1	Block Diagram	6		
	6.2	Operation	6		
7	Appli	cation Information	.7		
	7.1	Typical Application Circuit	7		
	7.2	Detailed Design Description	7		
	7.3	Power Dissipation	7		
8	Layo	ut Guidelines and Example	. 9		
9	Packa	age Information	10		
	9.1	Outline Dimensions	10		
	9.2	Recommended Land Pattern	16		
10	Orde	ing Information	19		
11	Revision History				

4 Device Overview

4.1 Pinout and Pin Assignment



SOT23-5

(Top View)

SOT89-3 (Top View)

4.2 Pin Description

	PIN NU	IMBER		PIN	FUNCTION
NAME	SOT23-3	SOT23-5	SOT89-3	TYPE ¹	FUNCTION
GND	1	2	1	G	Ground pin.
IN	3	1	2	Р	Power supply input pin.
OUT	2	5	3	Р	Output pin.
EN		3		I	Enable pin.
NC		4			No connection.

1. I = Input, P = Power, G = Ground.

5 Parameter Information

5.1 Absolute Maximum Ratings

Exceeding the operating temperature range(unless otherwise noted)¹

SYMBOL	PARAMETER	MIN	MAX	UNIT
VIN	IN	-0.3	50	V
Ven	Enable pin voltage	-0.3	6.5	V
	Power Dissipation, SOT23-3 @ $T_A = 25^{\circ}C$		0.25	W
PD	Power Dissipation, SOT23-5 @ $T_A = 25^{\circ}C$		0.3	
	Power Dissipation, SOT89-3 @ $T_A = 25^{\circ}C$		0.5	
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-50	150	°C

 The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

5.2 Recommended Operation Conditions

SYMBOL ¹	PARAMETER		ΤΥΡ	MAX	UNIT
V _{IN}	Input supply voltage range	3		40	V
T _A	Operating ambient temperature			85	°C
TJ	Operating junction temperature	-40		125	°C

1. The device is not guaranteed to function outside of its operating conditions.

5.3 Electrical Sensitivity

SYMBOL	SYMBOL CONDITIONS			
Vesd(HBM)	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017 ¹	±2000	V	
Vesd(CDM)	Charge-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022 ²	±500	V	

1. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Resistance

SYMBOL ¹	CONDITIONS	PACKAGE	VALUE	UNIT
		SOT23-3	360	
Θ _{JA}	Natural convection, 2S2P PCB	SOT23-5	250	°C/W
		SOT89-3	135	

1. Thermal characteristics are based on simulation, and meet JEDEC document JESD51-7.

5.5 Electrical Characteristics

|--|

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
VIN	Operating input voltage		3		40	V
V _{OUT_ACC}	Output voltage Accuracy		-2		2	%
Іоит	Maximum output current	V _{IN} = V _{OUT} + 2V		200		mA
Ilim	Output current limit			350		mA
lq	Quiescent current	I _{OUT} = 0mA		2.5	6	μA
Isd	Shutdown current	V _{EN} = 0V		0.1	0.2	μA
V _{DO}	Dropout voltage	I _{OUT} = 100mA		800		mV
V _{EN_L}	Enable voltage falling				0.4	V
V _{EN_H}	Enable voltage rising		1			V
R _{DIS}	Discharge resistance			450		Ω
		V _{IN} = V _{OUT} + 1V, V _{OUT} = 3.3V, I _{OUT} = 10mA, f = 100Hz		80		
PSRR	Power supply rejection ration	V _{IN} = V _{OUT} + 1V, V _{OUT} = 3.3V, I _{OUT} = 10mA, f = 1KHz		70		dB
		V _{IN} = V _{OUT} + 1V, V _{OUT} = 3.3V, I _{OUT} = 10mA, f = 10KHz		50		
ΔV_{LINE}	Line regulation	V _{OUT} + 1.0V ≤ V _{IN} ≤ 40V I _{OUT} = 1mA		0.01	0.2	%/V
ΔV_{LOAD}	Load regulation	V _{IN} = V _{OUT} + 2.0V 1mA ≤ I _{OUT} ≤ 100mA		10	50	mV
ΔV _T	Temperature coefficient	l _{OUT} = 1mA, −40°C ≤ l _{OUT} ≤ 85°C		50		ppm/°C
T _{SD}	Thermal shutdown protection			160		°C
T _{SD_HYS}	Thermal shutdown hysteresis			25		°C

6 Functional Description

6.1 Block Diagram

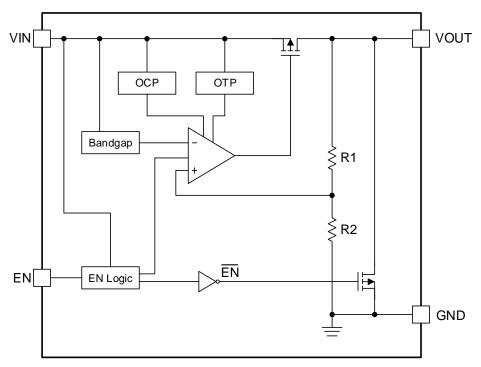


Figure 1. GD30LD2406 Functional Block Diagram

6.2 Operation

The external input and output capacitors of GD30LD2406 series must be properly selected for stability and performance. Use a 1μ F or larger input capacitor and place it close to the device IN and GND pins. The GD30LD2406 series is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Place the output capacitor close to the device OUT and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

6.2.1 Dropout Voltage

The GD30LD2406 series use a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout voltage (V_{DO}), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} scales approximately with the output current because the PMOS device behaves as a resistor in dropout condition.

6.2.2 Current Limit

The GD30LD2406 series contain the current limiter of output power transistor, which monitors and controls the transistor, limiting the output current to 350mA (typical). The output can be shorted to ground indefinitely without damaging the part.

7 Application Information

The GD30LD2406 is high voltage, low power consumption and low dropout LDO.

7.1 Typical Application Circuit

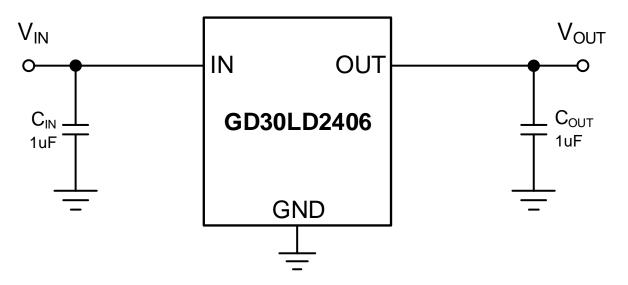


Figure 2. Reference Design Schematic

7.2 Detailed Design Description

7.2.1 Input Capacitor Selection

A 1µF or lager ceramic capacitor is recommended to connect between IN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both IN and GND.

7.2.2 Output Capacitor Selection

An output capacitor is required for the stability of the LDO. The recommended output capacitance is 1µF or lager, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

7.3 Power Dissipation

Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must be as free as possible of other heat-generating devices that cause added thermal stresses.

Power dissipation in the regulator depends on the input-to-output voltage difference and load conditions.

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$
(1)

www.gigadevice.com

 $V_{IN} \times V_{OUT}$ represents the static power consumption of the LDO, the value is relatively small and can be ignored. An important note is that power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low dropout of the device allows for maximum efficiency across a wide range of output voltages.

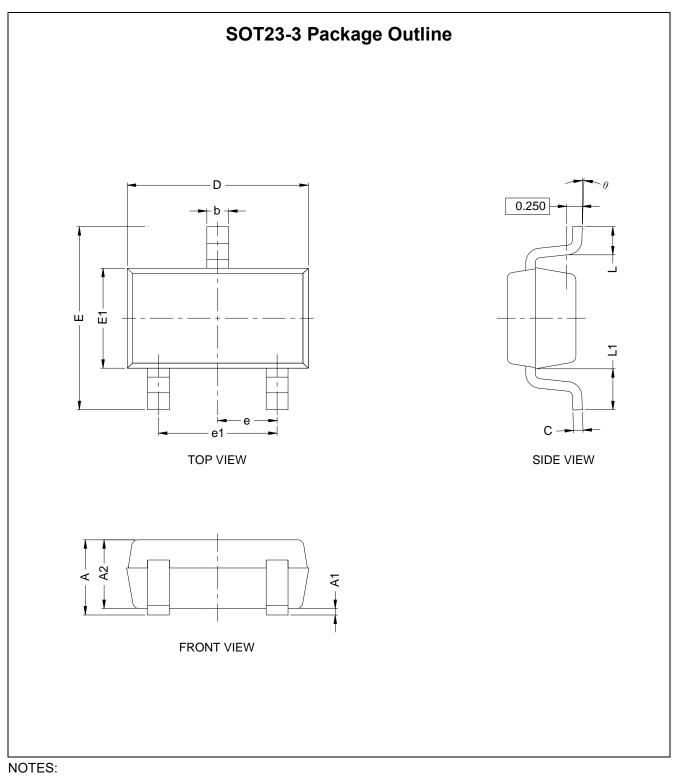
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to any inner plane areas or to a bottom-side copper plane.

The maximum power dissipation determines the maximum allowable junction temperature (T_J) for the device. Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance (θ_{JA}) of the combined PCB, device package, and the temperature of the ambient air (T_A). The maximum power dissipation can be calculated as below:

$$\mathbf{T}_{\mathsf{J}} = \mathbf{T}_{\mathsf{A}} + \boldsymbol{\theta}_{\mathsf{J}\mathsf{A}} \times \mathbf{P}_{\mathsf{D}} \tag{2}$$

$$I_{OUT} = \frac{T_{J} - T_{A}}{\theta_{JA} \times (V_{IN} - V_{OUT})}$$
(3)

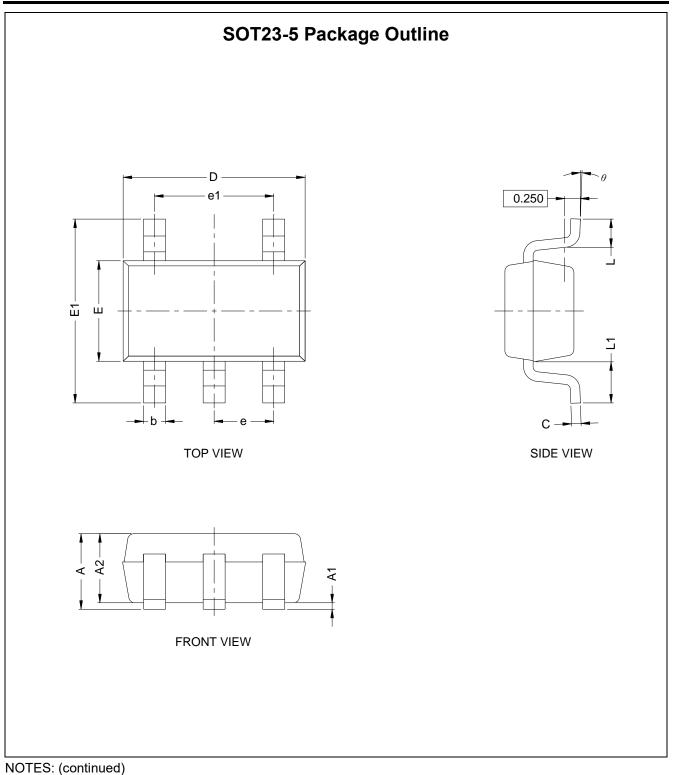
8 Layout Guidelines and Example


By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the GD30LD2406 ground pin using as wide and as short of a copper trace as is practical.

Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

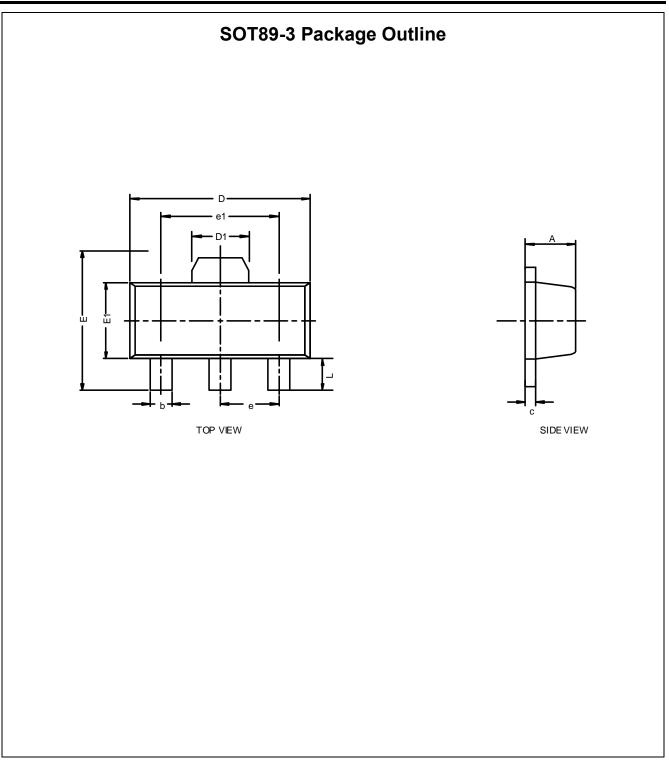
9 Package Information

9.1 Outline Dimensions


- 1. All dimensions are in millimeters.
- 2. Package dimensions does not include mold flash, protrusions, or gate burrs.
- 3. Refer to the Table 1 SOT23-3 dimensions(mm).

SYMBOL	MIN	NOM	MAX
A			1.25
A1	0.00		0.10
A2	1.05	1.10	1.15
b	0.30		0.40
с	0.10		0.20
D	2.82	2.92	3.02
E	2.60	2.90	3.00
E1	1.50	1.60	1.70
e		0.95 BSC	
e1		1.90 BSC	
L	0.30		0.60
L1	0.49	0.64	0.79
θ	0°		8°

GD30LD2406


1. Refer to the Table 2. SOT23-5 dimensions(mm).

SYMBOL	MIN	NOM	MAX
A	1.05		1.25
A1	0.00		0.10
A2	1.05	1.10	1.15
b	0.30		0.50
С	0.10		0.20
D	2.82	2.92	3.02
E	1.50	1.60	1.70
E1	2.65		2.95
е		0.95 BSC	
e1	1.80	1.90	2.00
L	0.30		0.60
L1	0.49	0.64	0.79
θ	0°		8°

GD30LD2406

NOTES: (continued)

1. Refer to the Table 3 SOT89-3 dimensions(mm).

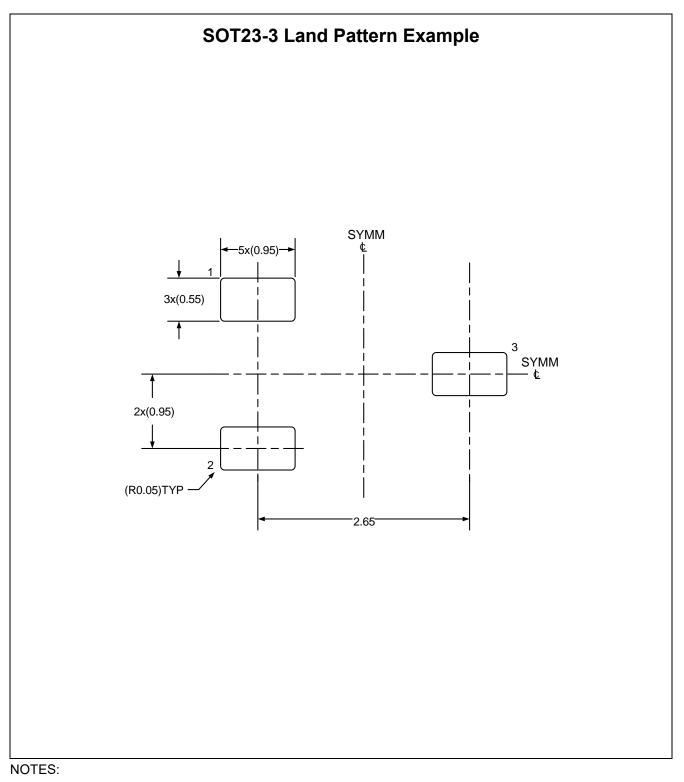
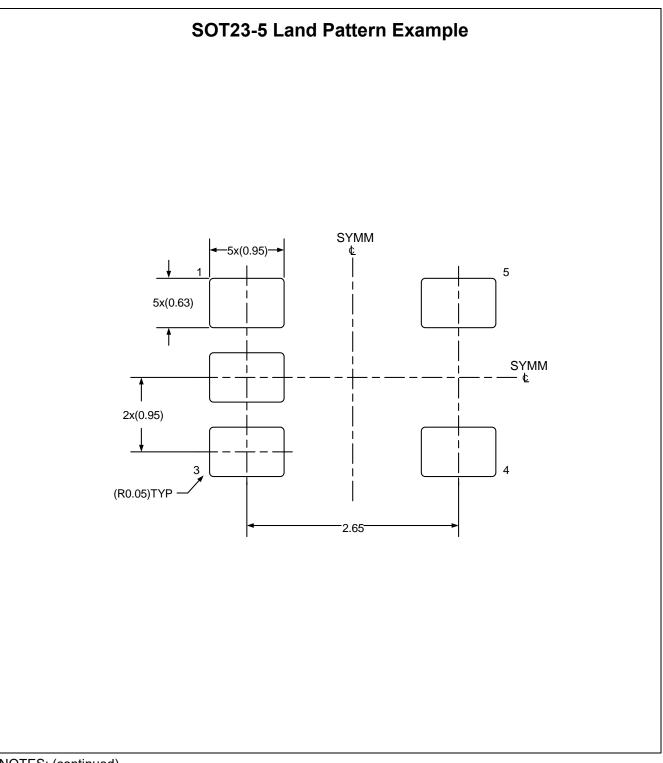


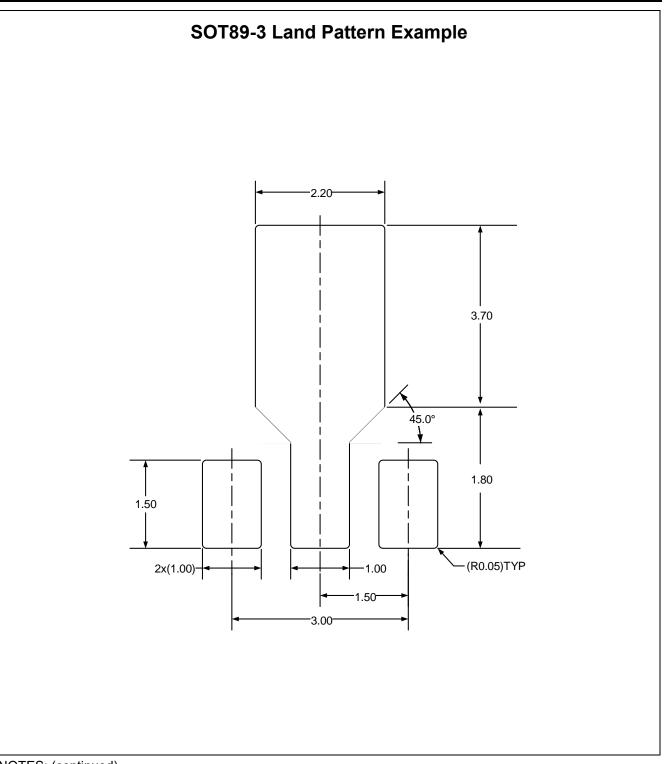
Table 3. SOT89-3 dimensions(mm)

SYMBOL	MIN	NOM	MAX
A	1.40		1.60
b	0.32		0.52
с	0.35		0.44
D	4.40		4.60
D1		1.55REF	
E	3.94		4.25
E1	2.30		2.60
е	1.50BSC		
e1	3.00BSC		
L	0.90		1.20



9.2 Recommended Land Pattern

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 20X scale.



NOTES: (continued)

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 20X scale.

NOTES: (continued)

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 15X scale.

10 Ordering Information

Ordering Code	Package Type	ECO Plan	Packing Type	MOQ	OP Temp(°C)
GD30LD2406BSTR-I30	SOT23-3	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406BSTR-I33	SOT23-3	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406BSTR-150	SOT23-3	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406NSTR-I30	SOT23-5	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406NSTR-I33	SOT23-5	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406NSTR-I50	SOT23-5	Green	Tape & Reel	3000	-40°C to +125°C
GD30LD2406BWTR-I30	SOT89-3	Green	Tape & Reel	1000	-40°C to +125°C
GD30LD2406BWTR-I33	SOT89-3	Green	Tape & Reel	1000	-40°C to +125°C
GD30LD2406BWTR-I50	SOT89-3	Green	Tape & Reel	1000	-40°C to +125°C

11 Revision History

REVISION NUMBER	DESCRIPTION	DATE
1.0	Initial release and device details	2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advancedlighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 GigaDevice - All rights reserved