

DDR5 Client VR on DIMM PMIC

1 Features

- VIN_Bulk Input Supply Range: 4.25V to 5.5V
- Three Buck Converters: SWA, SWB & SWC
- Configurable Dual Phase and Single
 Phase Node for SWA and SWB
- 0.75% Output Accuracy
- Configurable Switching Frequency of
 Buck
- CCS COT Mode Enables Fast Transient Response
- 2 LDO Regulators: VOUT_1.8V, VOUT_1.0V
- Secure Mode and Programmable Mode
 of Operation
- Supports I²C and I³C Interface
- Controllable Soft-start /Soft-stop Time of
 Buck
- Protection Functions, Including OVP, UVP, OCP and OTP
- Power Good Indicator
- General Status Interrupt Function
- WQFN-28 Package
- RoHS Compliant

2 Applications

DDR5 SO-DIMM, UDIMM

3 Description

The GD30MP1020 is an integrated solution for DDR5 SODIMM and UDIMM power management IC. The PMIC features three buck converters and two LDO regulators. The buck converters are designed by capacitor current sense constant on time (CCS COT) control that provides fast transient response, the noise immunity and all kinds of very low ESR output capacitor for ensuring performance stabilization. All three buck converters equip with automatic power saving mode (PSM) for optimizing efficiency. The two LDO regulators, VOUT_1.0V and VOUT_1.8V, can supply DIMM module's sideband and SDP usage. The PMIC supports selectable interface (I2C or I3C Basic) to fit various application environment.

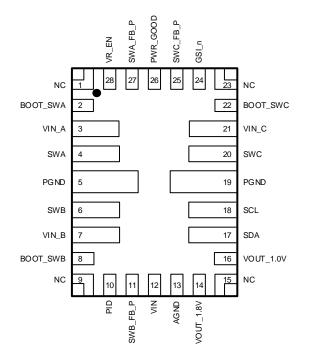
Two of the buck converters (SWA and SWB) can be configured to operate in dual-phase single channel. Two ADCs are implemented to monitor the current consumptions of the buck converters and the voltage information of the input/output rails.

The GD30MP1020 is available in low-profile thermal enhanced WQFN-28 (3.00 mmx4.00 mm) package.

Device Information¹

PART NUMBER	PACKAGE	BODY SIZE (NOM)
GD30MP1020	WQFN-28L	3.00 mm x 4.00 mm

1. For packaging details, see *Package Information* section.


Table of Contents

1	Featu	ires	1
2	Appli	cations	1
3	Desc	ription	1
Tab	le of C	ontents	2
4	Devic	e Overview	3
	4.1	Pinout and Pin Assignment	3
	4.2	Pin Description	3
5	Parar	neter Information	6
	5.1	Absolute Maximum Ratings	6
	5.2	Recommended Operation Conditions	6
	5.3	Electrical Sensitivity	6
	5.4	Thermal Resistance	6
	5.5	Electrical Characteristics	7
6	Func	tional Description	11
	6.1	Block Diagram	11
	6.2	Operation	12
7	Appli	cation Information	28
	7.1	Typical Application Circuit	28
	7.2	Detailed Design Description	29
8	Regis	ster Description	34
	8.1	Register Attribute Definition	34
	8.2	Register Map Breakdown	34
	8.3	Host Region Register Map	34
	8.4	DIMM Region Register Map	39
	8.5	Register Definition	41
9	Layo	ut Guidelines and Example	83
10	Pack	age Information	85
	10.1	Outline Dimensions	85
11	Orde	ring information	87
12	Revis	ion History	88

4 Device Overview

4.1 Pinout and Pin Assignment

4.2 Pin Description

P	IN		FUNCTION
NAME	NO		FUNCTION
NC	1, 9, 15, 23		Non-functional pins. No internal connections to the chip.
			Buck A bootstrap. Bootstrap node for switch node SWA high-side
BOOT_SWA	2	0	NMOS driver. Connect a capacitor between SWA and BOOT_SWA to
			form a floating supply across the high-side switch driver of Buck A.
VIN_A			5V power input supply to the PMIC for SWA, SWB and SWC
_	3, 7, 21	Ρ	respectively. All three VIN_Bulk input pins must be connected to the 5
VIN_B VIN_C			V input supply even if one or more output regulators are not intended
			to be used.
			Switch node A output buck regulator. This pin connects to L1 power
			inductor.
			In single phase regulator mode of operation, the SWA output must not
SWA	4	Р	be connected to SWB output even if they are configured to same
			exact output voltage.
			In dual phase regulator mode of operation, the SWA and SWB
			outputs are connected.
PGND	5, 19	G	Power Ground. Connect PGND to DIMM ground plane.

P	IN		
NAME	NO	PIN TYPE ¹	FUNCTION
SWB	6	Ρ	Switch node B output buck regulator. This pin connects to L2 power inductor. In single phase regulator mode of operation, the SWB output must not be connected to SWA output even if they are configured to same exact output voltage. In dual phase regulator mode of operation, the SWA and SWB outputs are connected.
BOOT_SWB	8	0	Buck B bootstrap. Bootstrap node for switch node SWB high-side NMOS driver. Connect a capacitor between SWB and BOOT_SWB to form a floating supply across the high-side switch driver of Buck B.
PID	10	I	PMIC ID pin for I ² C and I ³ C Basic bus.
SWB_FB_P	11	I	Switch node B output buck regulator positive feedback. In single phase regulator mode of operation, this pin connects to DIMM power plane load. In dual phase regulator mode of operation, this pin is connected to GND.
VIN	12	Р	5 V power input supply to the PMIC for analog circuits.
AGND	13	G	Analog Ground. Connect AGND to DIMM ground plane.
VLDO_1.8V	14	Р	1.8V LDO Output.
VLDO_1.0V	16	Р	1.0V LDO Output.
SDA	17	IO	Data input and output for I ² C and I ³ C Basic bus management interface.
SCL	18	IO	Clock input for I ² C and I ³ C Basic bus management interface.
SWC	20	Р	Switch node C output buck regulator. This pin connects to L3 power inductor.
BOOT_SWC	22	0	Buck C bootstrap. Bootstrap node for switch node SWC high-side NMOS driver. Connect a capacitor between SWC and BOOT_SWC to form a floating supply across the high-side switch driver of Buck C.
GSI_n	24	0	General Status Interrupt. Open Drain Output. This PMIC asserts this pin low to communicate any or more events to host. This pin stays asserted until the appropriate registers are explicitly cleared and event is no longer present.
SWC_FB_P	25	Р	Switch node C output buck regulator positive feedback. This pin connects to DIMM power plane load.

PI	N		EUNCTION
NAME	NO		FUNCTION
			Power good indicator. Open Drain output. The PMIC floats this pin
	26		high when VIN_Bulk input supply as well as all enabled output buck
			regulators and all LDO regulator tolerance threshold is maintained as
			configured in appropriate register. The PMIC drives this pin low when
PWR GOOD		0	VIN_Bulk input goes below the threshold or when any of the enabled
1 WIX_600D		0	switch output regulators exceeds the threshold configured in the
			appropriate register or any LDO output regulator exceeds the
			threshold tolerance.
			Input: The PMIC disables its output regulators when this pin is low.
			The LDO outputs shall remain on.
			Switch node A output buck regulator positive feedback. In single
SWA_FB_P	27	Р	phase or dual phase regulator mode of operation, this pin connects to
			DIMM power plane load.
			PMIC Enable. When this pin is high, the PMIC turns on the regulator.
VR_EN	28	I	When this pin is low, the PMIC turns off the regulator. This pin shall
			not be left floating. If it is not used, it shall be tied to GND.

1. I = Input, O = Output, IO = Input/Output, P = Power, G = Ground.

5 Parameter Information

5.1 Absolute Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

SYMBOL	PARAMETER	MIN	MAX	UNIT
VIN, VINA, VINB, VINC	Supply Input Voltage	-0.3	6.0	V
AGND to PGND		-0.3	0.3	V
Other I/O		-0.3	6.0	V
	DC	-0.3	6	V
SWA, SWB, SWC	<25ns Transient	-0.3	9	V
TJ	Operating junction temperature	-40	155	°C
T _{stg}	Storage temperature	-55	150	°C
P _{max}	Maximum power dissipation @ T _A =+25°C		TBD	W

5.2 Recommended Operation Conditions

SYMBOL ^{1,2}	PARAMETER	MIN	ТҮР	MAX	UNIT
VIN, VINA, VINB, VINC	Supply Input voltage	4.25		5.5	V
T _A	Operating ambient temperature	0		85	°C
TJ	Operating junction temperature	-10		125	°C

1. The device is not guaranteed to function outside of its operating conditions.

5.3 Electrical Sensitivity

SYMBOL	CONDITIONS	VALUE	UNIT
Vesd(HBM)	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017 ¹	±2000	V
Vesd(CDM)	Charge-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022 ²	±500	V

1. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Resistance

SYMBOL ¹	CONDITIONS	PACKAGE	VALUE	UNIT
ΘJA	Natural convection, 2S2P PCB	WQFN28	TBD	°C/W
Θ」C	Cold plate, 2S2P PCB	WQFN28	TBD	°C/W

1. Thermal characteristics are based on simulation, and meet JEDEC document JESD51-7.

5.5 Electrical Characteristics

Limits apply over the full operating ambient temperature range ($0^{\circ}C \le T_A \le +85^{\circ}C$) and $V_{INA} = V_{INC} = V_{INC} = 5V$, typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Power Sup	ply					
VIN	Input Supply Voltage DC Voltage		4.25	5	5.5	V
Vina, Vinb, Vinc	Input supply Voltage VINA, VINB, VINC	V _{IN} Rising	4.25	5	5.5	V
	VIN Supply Current	VR_EN=0; all LDO, SWA to SWC off, T _A =25°C			25	μA
SWA / SWB	·	·				
Vout_swa/b	Output Voltage Setting	Setting by reg_0x21[7:1]/ 0x25[7:1]	0.8	1.1	1.435	V
Vout_swa/b	Output Voltage Accuracy	V _{BAT} =5V only, I _{out} =0, CCM	-0.75		0.75	%
	Dynamic Voltage Scale slew rate			1		mV/µs
-	Soft-start Time	t _{set} = 1ms to 14 ms	-15		15	%
	Soft-stop Time	t _{set} = 0.5ms to 4 ms	-20		20	%
Rds(on)_swa/swb_h	High side MOSFET RDS(ON)			16		mΩ
Rds(on)_swa/swb_l	Low side MOSFET RDS(ON)			10		mΩ
	Switching Frequency	Setting by reg_0x29[5:4]/ 0x2A[5:4]=00 (default)	-15%	0.75	+15%	
		Setting by reg_0x29[5:4]/ 0x2A[5:4]=01	-15%	1.0	+15%	
fsw_swa/b		Setting by reg_0x29[5:4]/ 0x2A[5:4]=10	-15%	1.25	+15%	MHz
		Setting by reg_0x29[5:4]/ 0x2A[5:4]=11	-15%	1.5	+15%	
		Setting by reg_0x22[5:4]/ 0x26[5:4]=00		7.5		
		Setting by reg_0x22[5:4]/ 0x26[5:4]=01	10			
	OVP Threshold	Setting by reg_0x22[5:4]/ 0x26[5:4]=10 (default)		12.5		%
		Setting by reg_0x22[5:4]/ 0x26[5:4]=11		20		•
tovpdly_swa/b	OVP Propagation Delay			5		μs
		Setting by reg_0x22[3:2]/ 0x26[3:2]=00 (default)	-10			
	UVP Threshold	Setting by reg_0x22[3:2]/ 0x26[3:2]=01		-12.5		%

Electrical Characteristics(Continued)

Limits apply over the full operating ambient temperature range ($0^{\circ}C \le T_A \le +85^{\circ}C$) and $V_{INA} = V_{INC} = V_{INC} = 5V$, typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.)

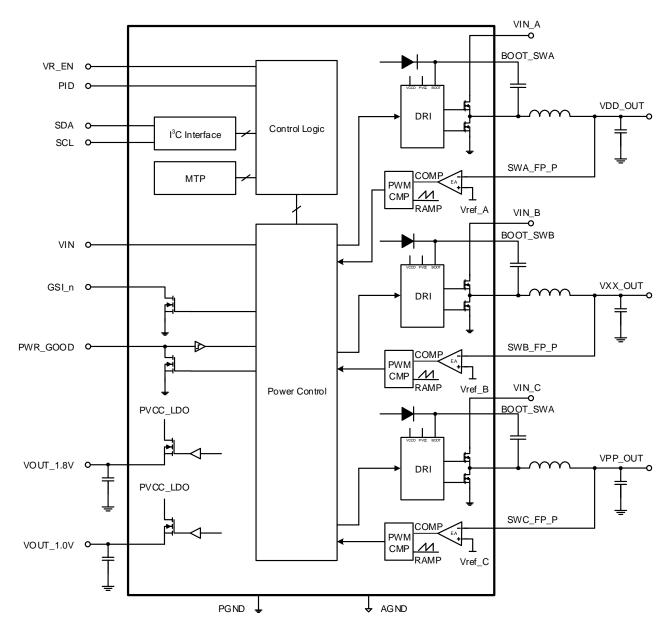
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
		Setting by reg_0x22[3:2]/		7.5		
		0x26[3:2]=10		-7.5		0/
	UVP Infeshold	Setting by reg_0x22[3:2]/		-20		%
		0x26[3:2]=11		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
t _{UVPDLY_} SWA/B	UVP Propagation Delay			5		μs
		Valley current limited Setting by		5.0		
L	Current Limit	reg_0x20[7:6]/[3:2]=00(default)		5.0		
ILIM_SWA/B		Setting by reg_0x20[7:6]/[3:2]=01		5.5		A
		Setting by reg_0x20[7:6]/[3:2]=10		6.0		
SWC						
Vout_swc	Output Voltage Setting		1.5	1.8	2.135	V
Vout_swc	Output Voltage Accuracy	I _{out} = 0, CCM	-0.75		0.75	%
	Dynamic Voltage Scale slew rate			1		mV/µs
	Soft-start Time	t _{set} = 1ms to 14ms	-15		15	%
	Soft-stop Time	t _{set} = 0.5ms to 4ms	-20		20	%
R _{DS(ON)_SWC}	High side MOSFET RDS(ON)			50		mΩ
Rds(on)_swc	Low side MOSFET RDS(ON)			40		mΩ
		Setting by reg_0x2A[1:0]=00	450/		+15%	MHz
		(default)	-15%	0.75		
fsw_swc	Switching Frequency	Setting by reg_0x2A[1:0]=01	-15%	1.0	+15%	
UVP Threshold Setting by reg_0x22[3:2]/ 0x26[3:2]=11 tuvPDLY_SWAB UVP Propagation Delay		Setting by reg_0x2A[1:0]=10	-15%	1.25	+15%	
	1.5	+15%				
		Setting by reg_0x28[5:4]=00		7.5		
		Setting by reg_0x28[5:4]=01		10		
	OVP Threshold	Setting by reg_0x28[5:4]=10		40.5		%
		(default)		12.5		
		Setting by reg_0x28[5:4]=11		20		
tovpdly_swc	OVP Propagation Delay			5		μs
		Setting by reg_0x28[3:2]=00		40		
		(default)	-10			
	UVP Threshold	Setting by reg_0x28[3:2]=01		-12.5		%
		Setting by reg_0x28[3:2]=10		-7.5		1
		Setting by reg_0x28[3:2]=11		-20		1
tuvpdly swc	UVP Propagation Delay			5		μs

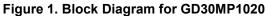
Electrical Characteristics(Continued)

Limits apply over the full operating ambient temperature range ($0^{\circ}C \le T_A \le +85^{\circ}C$) and $V_{INA} = V_{INB} = V_{INC} = V_{IN} = 5V$, typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
		Valley current limited Setting by reg_0x20[1:0]=00		0.5		
		Setting by reg_0x20[1:0]=01		1.0		
LIM_SWC_LOWCurrent	Current Limit	Setting by reg_0x20[1:0]=10		1.5		A
		Setting by				
		reg_0x20[1:0]=11(default)		2		
VLDO_1.8V (1.8	3V, IMAX = 25mA)					
		Setting by reg_0x2B[7:6]=00	-2.0%	1.7	+2.0%	
VLD0_1.8V	Output Voltage	setting by reg_0x2B[7:6]=01 (default)	-2.0%	1.8	+2.0%	v
VLDO_1.8V		Setting by reg_0x2B[7:6]=10	-2.0%	1.9	+2.0%	v
		Setting by reg_0x2B[7:6]=10	-2.0%	2.0	+2.0%	
	Current Limit		2.070	2.0	12.070	mA
				200		IIIA
VLDO_1.0V (1.0)V, IMAX = 20mA)		0.00/	0.0	.0.00/	
	Output Voltage	Setting by reg_0x2B[2:1]=00	-2.0%	0.9	+2.0%	
VLDO_1.0V		setting by reg_0x2B[2:1]=01 (default)	-2.0% 1.0	1.0	+2.0%	V
		Setting by reg_0x2B[2:1]=10	-2.0%	1.1	+2.0%	
		Setting by reg_0x2B[2:1]=11	-2.0%	1.2	+2.0%	
	Current Limit			200		mA
Logic Interface	DC Electrical Specification					
ViL	Input Low Voltage (PWR_GOOD, SDA, SCL, VR_EN)		-0.3		0.3	V
	Input High Voltage (SDA, SCL)		0.7		3.6	
Vih	Input High Voltage (PWR_GOOD, VR_EN)		1.26		3.6	V
Vol	Output Low Voltage (SDA, PWE_GOOD, GSI_n)				0.3	V
V _{OH}	Output High Voltage (SDA)		0.75			V
l _{ol}	Output Low Current (SDA, PWR_GOOD, GSI_n)				3	mA
Іон	Output High Current (SDA)		-3			mA
	Input Leakage Current				±5	μA
ILO	Output Leakage Current				±5	μΑ
SR	Rising Output Slew Rate (SDA)		0.1		1	V/ns

Electrical Characteristics(Continued)


Limits apply over the full operating ambient temperature range ($0^{\circ}C \le T_A \le +85^{\circ}C$) and $V_{INA} = V_{INB} = V_{INC} = V_{IN} = 5V$, typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.)


SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
SR	Falling Output Slew Rate (SDA)		0.1		3	V/ns
fscl,I ² c	I ² C operate Frequency		0.01		1	MHz
fscl,I ³ c	I ³ C operate Frequency		0.01		12.5	MHz

6 Functional Description

6.1 Block Diagram

6.2 Operation

6.2.1 PMIC Input Voltage Supply and Ramp Condition

The GD30MP1020 has one input supply from the platform: VIN_Bulk.

The VIN_Bulk supply is used by the PMIC for all three switch (SWA, SWB, SWC) output regulators and two LDO outputs (VOUT_1.8V & VOUT_1.0V) regulators. Note that the VOUT_1.8V LDO output is separate and independent from SWC output, which is for the DRAM VPP rail. The VOUT_1.0V LDO output is separate and independent from SWA or SWB.

At first power on, the VIN_Bulk input supply shall reach a minimum threshold voltage of 4.25V before it can be detected as a valid input supply to the PMIC.

Once the VIN_Bulk supply is valid and stable, the PMIC shall assert PWR_GOOD output low, drive VOUT_1.8V & VOUT_1.0V supply within $t_{1.8V_{Ready}}$ and $t_{1.0V_{Ready}}$ time respectively. The PMIC drives PWR_GOOD output signal low only when VIN_Bulk input supply reaches minimum of 4.25V. The PWR_GOOD output is pulled up to either 1.8V or 3.3V on the platform or on the host controller.

The PWR_GOOD pull up voltage (either 1.8V or 3.3V) can be available before or after VIN_Bulk is valid and stable. If PWR_GOOD pull up voltage is available before VIN_Bulk is applied, the PWR_GOOD signal is High and remains High with no leakage path or damage to the PMIC. When VIN_Bulk is applied to the PMIC, the PMIC asserts PWR_GOOD output low.

The PMIC shall enable I^2C/I^3C bus interface function within $t_{Management_Ready}$. The host shall not attempt to access the PMIC's memory registers until $t_{Management_Ready}$ timing requirement is satisfied.

6.2.2 Power Up Initialization Sequence

During power on, the host shall:

- [1] Ramp up VIN_Bulk supply.
- [2] Hold VIN_Bulk supply stable for a minimum of $t_{VIN_Bulk_to_VR_Enable}$ time.
- [3] Hold VR_EN pin to static low or high.
- [4] During VIN_Bulk ramp, if VR_EN signal is held low, it can transition to high only once. Once high, it shall remain high. The VR_EN signal is not allowed to transition to low during VIN_Bulk ramp up.
- [5] If VR_EN pin is held High during VIN_Bulk ramp up or transitions to High during VIN_Bulk ramp up, the PMIC turns on its output rails.
- [6] If VR_EN pin is held Low during VIN_Bulk Ramp, assert VR_EN signal High to turn on PMIC output rails. Alternatively, host can issue VR Enable command by setting register 0x32[7] = 1 via I²C/I³C Basic bus or via DEVCTRL CCC to turn on PMIC output rails.

Figure 2 to Figure 6 shows example of PMIC power up initialization sequence. Note that the specific sequence of ramping the output regulators (SWA, SWB, SWC) is for example purpose only. The specific ramp up sequence is configurable through power on sequence configuration registers.

After VR Enable command is registered on the I²C or I³C Basic bus or VR_EN pin is registered high, the PMIC

shall complete the following steps within $t_{PMIC_PWR_GOOD_OUT}$:

- [1] Check VIN_Bulk Power Good status is valid.
- [2] Power up itself GD30MP1020 executes Power On Sequence Config0 to Power On Sequence Config2 registers and configures GD30MP1020 internal registers as programmed in DIMM vendor memory space registers.
- [3] Power up all enabled output switch regulators and ready for normal operation.
- [4] Update status registers 0x08[5,3:2] and floats PWR_GOOD signal within maximum of tPMIC_PWR_GOOD_OUT time.
- [5] If PMIC PWR_GOOD signal is not floated within t_{PMIC_PWR_GOOD_OUT} time, the host can access the PMIC status registers for detailed information after t_{PMIC_PWR_GOOD_OUT} time. The PMIC may NACK for any host request on I²C or I³C Basic bus after VR Enable command (either with VR_EN pin high or on I²C/I³C Basic Bus) until t_{PMIC_PWR_GOOD_OUT} time expires.

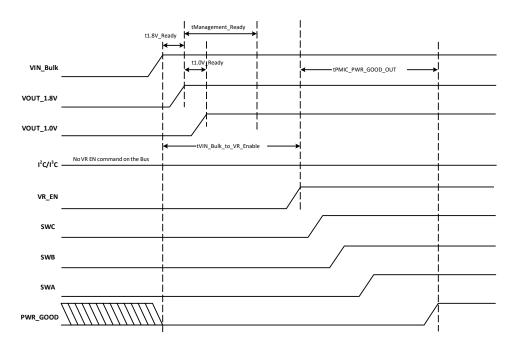
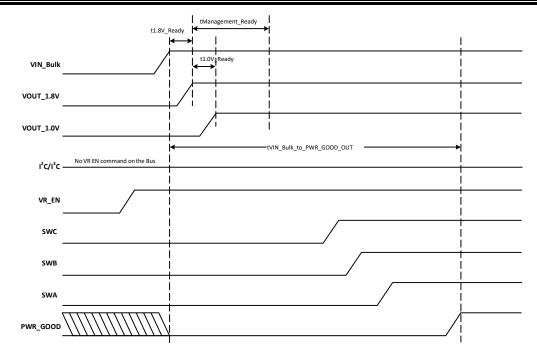



Figure 2. Power Up Sequence; VR_EN pin High after VIN_Bulk Ramp; No Bus Command

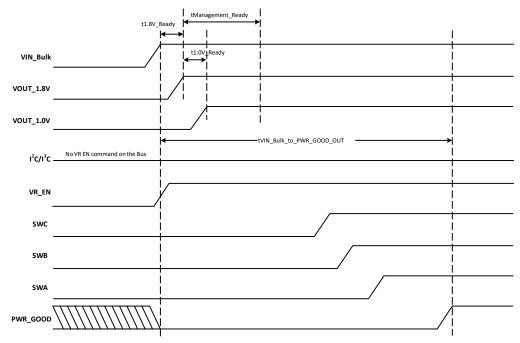


Figure 4. Power Up Sequence; VR_EN pin High during VIN_Bulk Ramp; No Bus Command

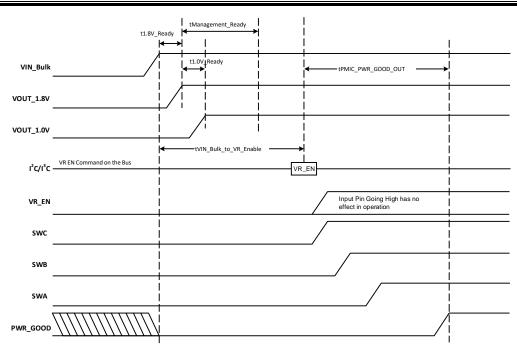
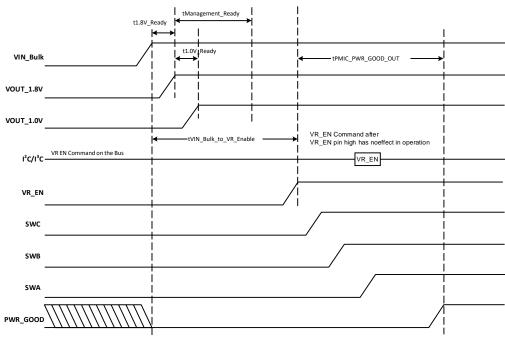
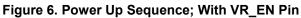
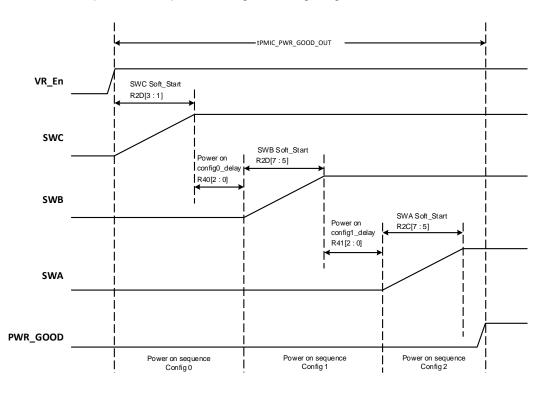




Figure 5. Power Up Sequence; With VR_EN Bus Command





6.2.3 Turn On Timing of PMIC Output Rail

The Figure 7 below shows the timing relationship once the PMIC receives VR Enable command (either with VR_EN pin or on I^2C/I^3C Basic bus) and when it floats PWR_GOOD output signal; timing parameter $t_{PMIC_PWR_GOOD_OUT}$ applies. This timing parameter is a sum of maximum soft start time and configured delay for each power on sequence configuration registers that are executed plus additional 5 ms timing margin error. The waveform shows each buck regulator output soft start time and delay time once the soft start time expires for each power on sequence config0 to power on sequence config2 registers. Note that if more than one regulators are enabled in a power on sequence config register and if those regulators have different soft start time programmed, then the larger value of that soft start time is used as a reference for delay time to start. Each regulator will still follow different soft start time to turn on the buck regulator.

The specific example in Figure 7 uses three power on sequence config0 to config2 registers and only one buck regulator is enabled in each power on sequence config0 to config2 registers.

6.2.4 Secure Mode & Programmable Mode of Operation

Prior to issuing VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus), the host must configure the register "Register 0x2F" [2] appropriately as desired. The PMIC offers two modes of operation after VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus) is registered.

- [1] Programmable Mode-In this mode, independent of when host issues VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus), the PMIC allows modification to any register in the host region as desired by the host and PMIC responds appropriately.
- [2] Secure Mode-In this mode, after host issues VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus), the PMIC does not allow modification to registers, "Register 0x15" to "Register 0x2F", "Register0x32"

[7,5:0] in the host region as well as "Register 0x40" to Register 0x6F in the DIMM vendor region. These registers are writen protected. The host must power cycle the PMIC to make any modification. The PMIC power cycle is defined as complete removal of VIN_Bulk input supply to the PMIC and this definition is applied to the entire specification. The Secure Mode is only applicable once VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus) is registered. This is important because by default, "Register 0x2F" [2] ='0'when PMIC is first powered up. Prior to VR Enable command (either with VR_EN pin or on I²C/I³C Basic bus), PMIC allows modification to any registers in the host region.

6.2.5 Power Down Output Regulators

Regardless of how PMIC's output regulators are turned on (w/VR_EN pin or w/VR Enable command on I²C/I³C Basic bus), the PMIC's output regulators are powered down as described below depending on PMIC's mode of operation.

Programmable Mode Operation; R1A [4] = 0

The PMIC allows host to power down any or all output regulators by any of the three methods below.

- [1] The VR Disable command (Register 0x32[7] = 0 or VR_EN pin transitions to low). The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The PMIC controls the PWR_GOOD signal as following in (a) and (b):
- (a) If VR Disable command with a pin (i.e. VR_EN pin transitions to Low), PMIC asserts PWR_GOOD signal Low. The host can re-enable the PMIC's output regulators by VR_EN pin transition to High. The PMIC executes power on sequence config0 to config2 registers and floats PWR_GOOD signal after t_{PMIC_PWR_GOOD_OUT} timing parameter is satisfied.
- (b) If VR Disable command on a l²C/l³C Bus (i.e. Register 0x32[7] = 0), PMIC keeps the PWR_GOOD signal floating because this is an intentional command from the host and not a fault condition. The host can reenable the PMIC's output regulators by issuing VR_EN command on the l²C/l³C bus (i.e. Register 0x32[7] = 1). The PMIC executes power on sequence config0 to config2 registers and continues to float the PWR_GOOD signal until t_{PMIC_PWR_GOOD_OUT} time at which point, PMIC assumes normal control of PWR_GOOD signal.
- (c) The simultaneous usage of VR_EN pin and I²C/I³C bus command to turn on/off the PMIC is not allowed. If the VR_EN pin transitions to Low first, the PWR_GOOD signal follows as described in (a) and PWR_GOOD signal remains low even if there is a subsequent I²C/I³C bus command as described in (b).
- [2] Configuring one or more bits in register 0x2F [6,4:3] to '0' in any specific sequence that is desired by the host. The PMIC does not execute power off sequence config0 to config2 on its own. The PMIC keeps the PWR_GOOD signal floating because this is intentional command from the host and not a fault condition. Note that host can re-enable any of disabled output regulators by configuring one or more bits in register 0x2F[6,4:3] to '1' in any specific sequence that is desired by the host. The PMIC keeps the PWR_GOOD signal floating.
- [3] If register 0x32[5] = 1, driving PWR_GOOD input low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers and drives PWR_GOOD signal low. The PMIC preserves all register contents including the MTP error log registers. If host re-enables PMIC's output regulators by issuing VR_EN command on the I2C/I3C Basic bus (i.e. register

0x32[7] = 1), the PMIC executes power on sequence config0 to config2 registers and floats PWR_GOOD output signal after tPMIC_PWR_GOOD_OUT timing parameter is satisfied. The PMIC does not require power cycle.

The PMIC, on its own, can generate internal VR Disable command at any time due to one or more events listed in "Trigger VR Disable".

The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The PMIC asserts PWR_GOOD signal low. The host can re-enable PMIC's output regulators with VR Enable command with either register 0x32[7] = 1 or VR_EN pin transitions to high and PMIC turns on its output regulators and floats PWR_GOOD signal. The PMIC does not require power cycle.

Programmable Mode Operation; R1A [4] = 1

The PMIC allows host to power down any or all output regulators by any of the three methods below.

- [1] The VR Disable command (Register 0x32[7] = 0 or VR_EN pin transitions to low). The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers and enters in P1 state. The PMIC controls the PWR_GOOD signal as following in (a) and (b):
- (a) If VR Disable command with a pin (i.e. VR_EN pin transitions to Low), PMIC asserts PWR_GOOD signal Low. The host can re-enable the PMIC's output regulators by VR_EN pin transition to High. The PMIC exits from P1 state and executes power on sequence config0 to config 2 registers and floats PWR_GOOD signal after tPMIC_PWR_GOOD_OUT timing parameter is satisfied.
- (b) If VR Disable command on a I²C/I³C Basic Bus (i.e. Register 0x32[7] = 0), PMIC keeps the PWR_GOOD signal floating because this is an intentional command from the host and not a fault condition. The PMIC exits from P1 state with only VR_EN pin transition to High. The host can re-enable the PMIC's output regulators by VR_EN pin transition to High and PMIC executes power on sequence config0 to config2 registers. The PMIC continues to float PWR_GOOD signal until tPMIC_PWR_GOOD_OUT timing parameter is satisfied and at that point PMIC assumes normal control of PWR_GOOD signal.
- [2] Configuring one or more bits in register 0x2F [6,4:3] to 0 in any specific sequence that is desired by the host. The PMIC does not execute power off sequence config0 to config2 on its own. The PMIC keeps the PWR_GOOD signal floating because this is intentional command from the host and not a fault condition. Note that host can re-enable any of disabled output regulators by configuring one or more bits in register 0x2F [6,4:3] to 1 in any specific sequence that is desired by the host. The PMIC keeps the PWR_GOOD signal floating.
- [3] If register 0x32[5] = 1, driving PWR_GOOD input low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers and drives PWR_GOOD signal low. The PMIC preserves all register contents including the MTP error log registers. The PMIC does not enter in P1 state. If host re-enables PMIC's output regulators by issuing VR_EN command on I2C/I3C Basic bus (i.e. Register 0x32[7] = 1), the PMIC executes power on sequence config0 to config2 registers and floats PWR_GOOD signal after tPMIC_PWR_GOOD_OUT timing parameter is satisfied. The PMIC does not require power cycle.

The PMIC, on its own, can generate internal VR Disable command at any time due to one or more events listed in "Trigger VR Disable". The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The PMIC does not enter in P1 state. The PMIC assert PWR_GOOD signal low. The host can re-enable PMIC's output regulators with VR Enable command with either

register 0x32[7] = 1 or VR_EN pin transitions to high and PMIC turns on its output regulators and floats PWR_GOOD signal. The PMIC does not require power cycle.

Secure Mode Operation; R1A [4] = 0

The PMIC allows host to power down any or all output regulators by any of the two methods below.

- [1] The VR Disable command with VR_EN pin transitions to low. The PMIC asserts PWR_GOOD signal Low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The host can re-enable the PMIC's output regulators by VR_EN pin transition to High. The PMIC executes power on sequence config0 to config2 registers and floats PWR_GOOD signal after tPMIC_PWR_GOOD_OUT timing parameter is satisfied. Note that VR Disable or Enable command on I²C/I³C Basic Bus (i.e. Register 0x32[7] = 0 or 1) has no effect on the PMIC. Also, configuring one or more bits in register 0x2F [6,4:3] to 0 has no effect on the PMIC.
- [2] If register 0x32[5] = 1, driving PWR_GOOD input low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers; drives PWR_GOOD signal low and unlocks only register 0x32 [7]. The PMIC preserves all register contents including the MTP error log registers and keeps all write protect registers locked except for the register 0x32[7]. When host issues VR Enable command by I²C/I³C Basic bus, the PMIC executes power on sequence config0 to config2 registers, floats PWR_GOOD output signal after t_{PMIC_PWR_GOOD_OUT} timing parameter is satisfied and re-locks register 0x32[7]. The PMIC does not require power cycle to re-enable PMIC's output regulators.

The PMIC, on its own, can generate internal VR Disable command at any time due to one or more events listed in "Trigger VR Disable". The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The PMIC assert PWR_GOOD signal low. The PMIC requires power cycle. The VR Enable command with either register 0x32[7] = 1 or VR_EN pin transitions to high has no effect on PMIC and PMIC keeps it PWR_GOOD signal low.

Secure Mode Operation; R1A [4] = 1

The PMIC allows host to power down any or all output regulators by any of the two methods below.

- [1] The VR Disable command with VR_EN pin transitions to low. The PMIC asserts PWR_GOOD signal Low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers and enters in P1 state. The host can re-enable the PMIC's output regulators by VR_EN pin transition to High. The PMIC exits from P1 state and execute power on sequence config0 to config2 registers and floats PWR_GOOD signal after tPMIC_PWR_GOOD_OUT timing parameter is satisfied. Note that VR Disable or Enable command on a I²C/I³C Basic Bus (i.e. Register 0x32[7] = 0 or 1) has no effect on the PMIC. Also, configuring one or more bits in register 0x2F [6,4:3] to 0 has no effect on the PMIC.
- [2] If register 0x32[5] = 1, driving PWR_GOOD input low. The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers; drives PWR_GOOD signal low and unlocks only register 0x32[7]. The PMIC preserves all register contents including the MTP error log registers and keeps all write protect registers locked except for the register 0x32[7]. The PMIC does not enter in P1 state. When host issues VR Enable command by I²C/I³C Basic bus, the PMIC executes Power on sequence config0 to config2 registers, floats PWR_GOOD output signal after t_{PMIC_PWR_GOOD_OUT} timing parameter is satisfied and re-locks register 0x32[7]. The PMIC does not require power cycle to re-enable PMIC's output regulators.

The PMIC, on its own, can generate internal VR Disable command at any time due to one or more events listed in "Trigger VR Disable". The PMIC executes power off sequence config0 to config2 to preserve the appropriate voltage relationship as configured in the registers. The PMIC does not enter in P1 state. The PMIC assert PWR_GOOD signal low. The PMIC requires power cycle. The VR Enable command with either register 0x32[7] = 1 or VR_EN pin transitions to high has no effect on PMIC and PMIC keeps it PWR_GOOD signal low.

Turn Off Timing of PMIC Output Rail

The Figure 8 below shows the timing relationship once the PMIC registers VR Disable command internally due to fault condition as listed in "Events Interrupt Summary". The waveform shows each buck regulator output soft stop time and delay time once the soft stop time expires from each power off sequence config0 to config2 registers. Note that if more than one regulators are disabled in a power off sequence config register and if those regulators have different soft stop time programmed, then the larger value of that soft stop time is used as a reference for delay time to start. Each regulator will still follow different soft stop time to turn off the buck regulator.

The specific example in Figure 8 uses only three power off sequence config0 to config2 registers and only one buck regulator is disabled in power off sequence config0, config1 and config2 registers.

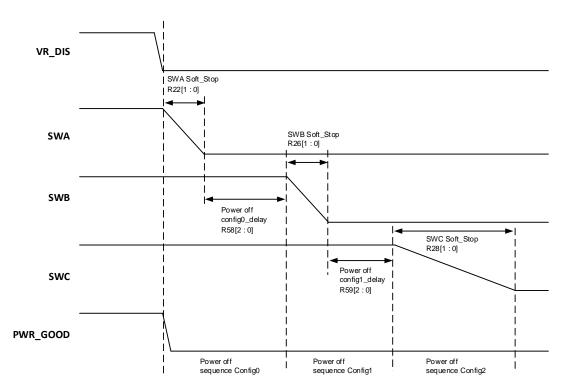


Figure 8. PMIC Power Off Timing Due to Internal Fault Condition

6.2.6 Idle State and Quiescent Power State

Quiescent Power State definition: VIN_Bulk nominal = 5.0V. All circuits including PMIC switch output and LDO output regulators are off. VR_EN signal is at static low or high level. I²C or I³C Basic interface access is not allowed and is pulled high. PID signal is at static low or high level. This state is only applicable if register 0x1A [4] = 1. This state is labeled as P1 state in Table 1 below.

Idle Power State definition: VIN_Bulk nominal = 5.0V. All circuits including PMIC switch output and LDO output regulators are on with 0A load. VR_EN signal is at static low or high level. I^2C or I^3C Basic interface access is allowed but bus is pulled high. PID signal is at static low or high level. This state is only applicable if register 0x1A [4] = 0. This state is a same state as P3 state but load on all switch outputs regulators and LDO output regulators is 0A.

State	Description			
P0	VIN_Bulk invalid			
D4	R1A[4] = '1'			
P1	Entry from P3 State Only			
	Transition from P3; After VR Enable Command			
	All Switch Regulators are Off			
D2 A1 (No Foult Event)	All LDOs are ON			
P2_A1 (No Fault Event)	PWR_GOOD Output = L or H			
	VR_EN Input = L or H			
	R32[7] = '0'			
	Transition from P3; After VR Enable Command			
	All Switch Regulators are Off			
P2_A2 (Fault Event)	All LDOs are ON			
FZ_AZ (Fault Event)	PWR_GOOD Output = L			
	VR_EN Input = L or H			
	R32[7] = '0'			
	Transient from P0 or P1 State; Before VR Enable Command			
	All Switch Regulators are Off			
P2_B	All LDOs are on			
FZ_D	PWR_GOOD Output = L			
	VR_EN Input = L			
	R32[7]='0'			
P3 (Regulation Mode or	All Switch Regulators are On			
Bulk Link Monitor Mode)	R32[7] = '1'			

Table 1. High Level Finite State Description

6.2.7 GSI_n Signal

General Status Interrupt (GSI_n) is an Open Drain output signal. By default at power on, GSI_n output is disabled. The host can enable the GSI_n output by setting register 0x1B[3] = 1. Typically, GSI_n output is pulled up to $10K\Omega$ resistor to 1.8 V or 3.3 V. The PMIC asserts GSI_n output for the events as described in Table 2.

6.2.8 Function Interrupt - PWR_GOOD and GSI_n Output Signals

This section defined the output functionality of GSI_n pin and PWR_GOOD pin.

When mask register bits are not set, the PMIC asserts its GSI_n output and assert PWR_GOOD output signals as shown in Table 2 when any event occurs. The table also highlights the events that cause PMIC to generate internally VR Disable command. For remaining events that does not trigger internal VR Disable command, the PMIC continues to operate as normal.

Status Event	Status Bit	Clear Bit	Mask Bit	Threshold	VR Disable	PWR_GOOD	GSI_n
				Setting	Trigger?	Output	-
VIN_Bulk Over Voltage	R08[0]	R10[0]	R15[0]	R1B[7]	Yes	Low	Low
SWA Output Power Good	R08[5]	R10[5]	R15[5]	R22[5:4]	No	Low	Low
	100[0]	1(10[0]	1(15[5]	R22[3:2]	NO	LOW	LOW
SWB Output Power Good	R08[3]	R10[3]	R15[3]	R26[5:4]	No	Low	Low
	[0]			R26[3:2]			
SWC Output Power Good	R08[2]	R10[2]	R15[2]	R28[5:4]	No	Low	Low
				R28[3:2]			
1.8V LDO Power Good	R09[5]	R11[5]	R16[5]	R1A[2]	No	Low	Low
1.0V LDO Power Good	R33[2]	R14[2]	R19[2]	R1A[0]	No	Low	Low
SWA Output Over Voltage	R0A[7]	R12[7]	R17[7]	R22[5:4]	Yes	Low	Low
SWB Output Over Voltage	R0A[5]	R12[5]	R17[5]	R26[5:4]	Yes	Low	Low
SWC Output Over Voltage	R0A[4]	R12[4]	R17[4]	R28[5:4]	Yes	Low	Low
SWA Output Under Voltage	R0B[3]	R13[3]	R18[3]	R22[3:2]	Yes	Low	Low
SWB Output Under Voltage	R0B[1]	R13[1]	R18[1]	R26[3:2]	Yes	Low	Low
SWC Output Under Voltage	R0B[0]	R13[0]	R18[0]	R28[3:2]	Yes	Low	Low
SWA Output Current Limit	R0B[7]	R13[7]	R18[7]	R20[7:6]	No	High	Low
SWB Output Current Limit	R0B[5]	R13[5]	R18[5]	R20[3:2]	No	High	Low
SWC Output Current Limit	R0B[4]	R13[4]	R18[4]	R20[1:0]	No	High	Low
SWA Output High Current	R09[3]	R11[3]	R16[3]	R20[7:6]	No	High	Low
/Power		L - J		- 1 - 1		5	
SWB Output High Current /Power	R09[1]	R11[1]	R16[1]	R20[3:2]	No	High	Low

Table 2. Events Interrupt Summary

GD30MP1020

Status Event	Status Bit	Clear Bit	Mask Bit	Threshold Setting	VR Disable Trigger?	PWR_GOOD Output	GSI_n
SWC Output High Current /Power	R09[0]	R11[0]	R16[0]	R20[1:0]	No	High	Low
High Temperature Warning	R09[7]	R11[7]	R16[7]	R1B[2:0]	No	High	Low
Critical Temperature	R08[6]	N/A	N/A	R2E[2:0]	Yes	Low	Low
PEC Error	R0A[3]	R12[3]	R17[3]	N/A	No	High	Low
Parity Error	R0A[2]	R12[2]	R17[2]	N/A	No	High	Low

The host is expected to read appropriate status registers to determine and isolate the cause of the GSI_n signal assertion or PWR_GOOD signal assertion. The host may attempt to clear or mask the appropriate corresponding interrupt event. The PMIC keeps the GSI_n signal asserted or PWR_GOOD signal asserted until the appropriate corresponding registers are explicitly cleared or masked by the host. Table 3 and Table 4 shows the PMIC's response of GSI_n signal and PWR_GOOD output signal for each event before and after host issues the Clear command. The Table 3 and Table 4 assumes that all mask bits are either '0' or '1' for simplicity.

		Event Occurred; All Mask Bits = "0"		Clear Command; Event Not Present; All Mask Bits = "0"		Event Occurred; All Mask Bits = "1"		Clear Command; Event Not Present; All Mask Bits = "1"	
Event				= "00" or or "10"	R2F[1:0] = "00"		R2F[1:0] = "00"		
	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	
VIN_Bulk Over Voltage	Low	Low	Low	High	Low	High	Low	High	
SWA Output Power Good	Low	Low	High	High	Low	High	High	High	
SWB Output Power Good	Low	Low	High	High	Low	High	High	High	
SWC Output Power Good	Low	Low	High	High	Low	High	High	High	
1.8V LDO Power Good	Low	Low	High	High	Low	High	High	High	
1.0V LDO Power Good	Low	Low	High	High	Low	High	High	High	
SWA Output Over Voltage	Low	Low	Low	High	Low	High	Low	High	
SWB Output Over Voltage	Low	Low	Low	High	Low	High	Low	High	
SWC Output Over Voltage	Low	Low	Low	High	Low	High	Low	High	
SWA Output Under Voltage	Low	Low	Low	High	Low	High	Low	High	

Table 3. GD30MP1020 Response for Clear Command by Host 1

GD30MP1020

		Event Occurred; All Mask Bits = "0"		ommand; Present; All its = "0"		ccurred; Bits = "1"	Event Not I	ommand; Present; All its = "1"
Event				= "00" or or "10"	R2F[1:0	9] = "00"	R2F[1:0	9] = "00"
	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output
SWB Output Under Voltage	Low	Low	Low	High	Low	High	Low	High
SWC Output Under Voltage	Low	Low	Low	High	Low	High	Low	High
SWA Output Current Limit	High	Low	High	High	High	High	High	High
SWB Output Current Limit	High	Low	High	High	High	High	High	High
SWC Output Current Limit	High	Low	High	High	High	High	High	High
SWA Output High Current /Power	High	Low	High	High	High	High	High	High
SWB Output High Current /Power	High	Low	High	High	High	High	High	High
SWC Output High Current /Power	High	Low	High	High	High	High	High	High
High Temperature Warning	High	Low	High	High	High	High	High	High
Critical Temperature	Low	Low	Power Cycle	Power Cycle	Low	Low	Power Cycle	Power Cycle
PEC Error	High	Low	High	High	High	High	High	High
Parity Error	High	Low	High	High	High	High	High	High

Table 4. GD30MP1020 Response for Clear Command by Host 2

			Event Not All Mask	Bits = "1"	All Mask	ccurred; Bits = "1"	Event No All Mask	ommand; t Present; Bits = "1"
Event	R2F[1:0 PWR_ GOOD] = "01" GSI_n	R2F[1:0 PWR_ GOOD] = "01" GSI_n	R2F[1:0 PWR_ GOOD] = "10" GSI_n	R2F[1:0 PWR_ GOOD] = "10" GSI_n
	Output	Output	Output	Output	Output	Output	Output	Output
VIN_BULK Over Voltage	Low	Low	Low	High	Low	High	Low	High
SWA Output Power Good	High	Low	High	High	High	High	High	High
SWB Output Power Good	High	Low	High	High	High	High	High	High
SWC Output Power Good	High	Low	High	High	High	High	High	High
1.8V LDO Power Good	High	Low	High	High	High	High	High	High
1.0V LDO Power Good	High	Low	High	High	High	High	High	High
SWA Output Over Voltage	Low	Low	Low	High	Low	High	Low	High
SWB Output Over Voltage	Low	Low	Low	High	Low	High	Low	High
SWC Output Over Voltage	Low	Low	Low	High	Low	High	Low	High
SWA Output Under Voltage	Low	Low	Low	High	Low	High	Low	High
SWB Output Under Voltage	Low	Low	Low	High	Low	High	Low	High
SWC Output Under Voltage	Low	Low	Low	High	Low	High	Low	High
SWA Output Current Limit	High	Low	High	High	High	High	High	High
SWB Output Current Limit	High	Low	High	High	High	High	High	High
SWC Output Current Limit	High	Low	High	High	High	High	High	High
SWA Output High Current/Power	High	Low	High	High	High	High	High	High
SWB Output High Current/Power	High	Low	High	High	High	High	High	High
SWC Output High Current/Power	High	Low	High	High	High	High	High	High

GD30MP1020

Event	Event Occurred; All Mask Bits = "1" R2F[1:0] = "01"		Clear Command; Event Not Present; All Mask Bits = "1" R2F[1:0] = "01"		Event Occurred; All Mask Bits = "1" R2F[1:0] = "10"		Clear Command; Event Not Present; All Mask Bits = "1" R2F[1:0] = "10"	
	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output	PWR_ GOOD Output	GSI_n Output
High Temperature Warning	High	Low	High	High	High	High	High	High
Critical Temperature	Low	Low	Power Cycle	Power Cycle	Low	Low	Power Cycle	Power Cycle
PEC Error	High	Low	High	High	High	High	High	High
Parity Error	High	Low	High	High	High	High	High	High

Note that when host masks any of the event in appropriate register, it only masks the assertion of GSI_n output signal or assertion of PWR_GOOD output signal. The PMIC functional behavior remains the same as noted for each event other than assertion of GSI_n output signal and assertion of PWR_GOOD output signal.

The PMIC assumes that there is no fuse protection on VIN_Bulk input rail on the DDR5 DIMM module to prevent short circuit type event.

6.2.9 Analog-to-Digital Converter (ADC)

The GD30MP1020 supports analog to digital converter (ADC) to monitor input supply voltages (VIN_Bulk) as well as output voltage regulator voltage (SWA, SWB, SWC, VOUT_1.8V and VOUT_1.0V). The register 0x30[7:3] allows to enable the ADC and select the input supply voltage or desired output supply voltage. The register 0x31[7:0] provides the actual voltage measurement. The accuracy of the voltage measurement is as following:

Input Rail	ADC Range	ADC Accuracy
SWA, SWB Output Voltage	1050mV to 1160mV	±1 LSB
SWA, SWB Output Voltage	Outside of 1050mV to 1160mV	±3 LSB
SIMC Output Maltage	1750mV to 1850mV	±1 LSB
SWC Output Voltage	Outside of 1750 mV to 1850mV	±3 LSB
VOUT_1.8V, VOUT_1.0V Output Voltage, VIN Input Voltage		±3 LSB

Table 5. ADC Accuracy Table

The GD30MP1020 also monitors output voltage regulator current or power (SWA, SWB and SWC) and updates register 0x0C[7:0] for SWA, register 0x0E[5:0] for SWB and register 0x0F[5:0] for SWC. The register 0x1B[6] allows host to select whether GD30MP1020 should report current measurements or power measurements. The current or power measurement reported in these registers are an average measurement over time period defined in register 0x30[1:0]. If register 0x1B[6] = 1, the register 0x1A[1] allows host to select whether GD30MP1020 should report individual rail power or total power in register 0x0C[7:0]. The register updates frequency of this register is configured in register 0x30[1:0]. The accuracy of the current (0.5A to 5A) or corresponding power measurement is ± 3 LSB or ± 6 LSB respectively. The accuracy of the current measurement (< 0.5 A) is ± 4 LSB or corresponding power measurement is ± 7 LSB respectively.

If register 0x1A[1] = 1, the accuracy of total power reported in register $0x0C = \pm 12$ LSB.

6.2.10 PMIC Address ID (PID)

The GD30MP1020 has PID input pin which allows assigning up to three different unique ID for I²C and I³C Basic protocol. At first power on, when VIN_Bulk input is applied, the PMIC automatically determines its ID. The GD30MP1020 offers three different ID as shown in Table 6.

PID Pin Connection on DIMM Board	PMIC ID	Comment
Short to GND	PID = 1001	PMIC can be configured
Floating	PID = 1000	
Short to 1.8V	PID = 1100	Connected to PMIC's VOUT_1.8V

Table 6. PMIC ID

7 Application Information

7.1 Typical Application Circuit

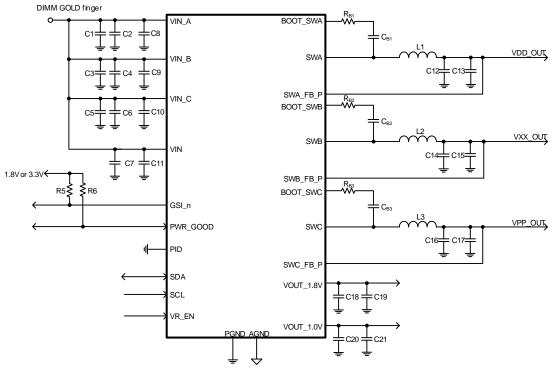


Figure 9. SWA and SWB are operating in Single-Phase Mode

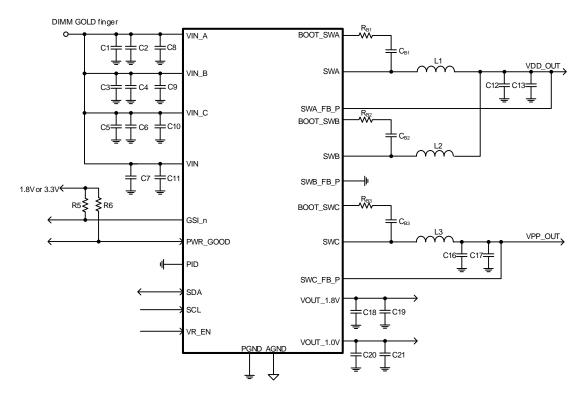
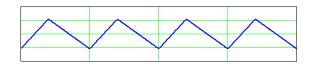


Figure 10. SWA and SWB are operating in Dual-Phase Mode

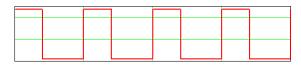
GD30MP1020 Rev1.1 Datasheet

7.2 Detailed Design Description

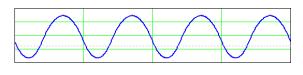

7.2.1 Output Capacitor Selection

The output capacitor is used to keep the DC output voltage and supply the load transient current. When operating in constant current mode, the output ripple is determined by four components:

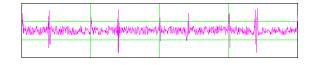
$$V_{\text{RIPPLE}}(t) = V_{\text{RIPPLE}(C)}(t) + V_{\text{RIPPLE}(\text{ESR})}(t) + V_{\text{RIPPLE}(\text{ESL})}(t) + V_{\text{NOISE}}(t)$$
(1)


The following figures show the form of the ripple contributions.

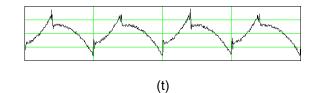
 $V_{RIPPLE(ESR)}(t)$



+ VRIPPLE(ESL)(t)



+ VRIPPLE(C)(t)

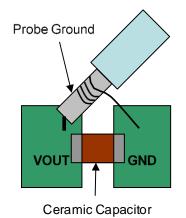


+ V_{NOISE}(t)

(t)

= V_{RIPPLE}(t)

GD30MP1020


$$V_{\text{RIPPLE(ESR)}} = \frac{V_{\text{OUT}}}{F_{\text{OSC}} \times L} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times \text{ESR}$$
(2)

$$V_{\text{RIPPLE(ESL)}} = \frac{\text{ESL}}{L} \times V_{\text{IN}}$$
(3)

$$V_{\text{RIPPLE(C)}} = \frac{V_{\text{OUT}}}{8 \times F_{\text{OSC}^2} \times L \times C_{\text{OUT}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$
(4)

Where F_{OSC} is the switching frequency, L is the inductance value, V_{IN} is the input voltage, ESR is the equivalent series resistance value of the output capacitor, ESL is the equivalent series inductance value of the output capacitor and the C_{OUT} is the output capacitor. Low ESR capacitors are preferred to use. Ceramic, tantalum or low ESR electrolytic capacitors can be used depending on the output ripple requirements. When using the ceramic capacitors, the ESL component is usually negligible.

It is important to use the proper method to eliminate high frequency noise when measuring the output ripple. The figure shows how to locate the probe across the capacitor when measuring output ripple. Remove the scope probe plastic jacket in order to expose the ground at the tip of the probe. It gives a very short connection from the probe ground to the capacitor and eliminates noise.

7.2.2 Input Capacitor Selection

The use of the input capacitor is filtering the input voltage ripple and the MOSFETS switching spike voltage. Because the input current to the step- down converter is discontinuous, the input capacitor is required to supply the current to the converter to keep the DC input voltage. The capacitor voltage rating should be 1.25 to 1.5 times greater than the maximum input voltage. The input capacitor ripple current RMS value is calculated as:

$$I_{\rm IN(RMS)} = I_{\rm OUT} \times \sqrt{D \times (1-D)}$$
(5)

$$D = \frac{V_{OUT}}{V_{IN}}$$
(6)

Where D is the duty cycle of the power MOSFET.

This function reaches the maximum value at D=0.5 and the equivalent RMS current is equal to IOUT/2.

A low ESR capacitor is required to keep the noise minimum. Ceramic capacitors are better, but tantalum or low ESR electrolytic capacitors may also suffice.

7.2.3 Inductor Selection

The output inductor is used for storing energy and filtering output ripple current. But the trade-off condition often happens between maximum energy storage and the physical size of the inductor. The first consideration for selecting the output inductor is to make sure that the inductance is large enough to keep the converter in the continuous current mode.

That will lower ripple current and result in lower output ripple voltage. The ΔI_{L} is inductor peak-to- peak ripple current:

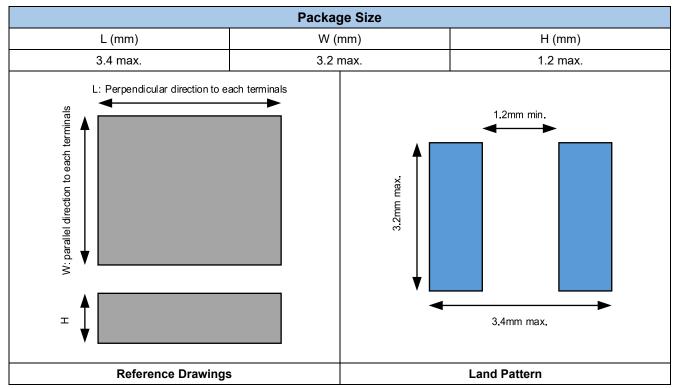
$$\Delta I_{L} = \frac{V_{OUT}}{F_{OSC}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
(7)

A good compromise value between size and efficiency is to set the peak-to-peak inductor ripple current ΔI_{\perp} equal to 30% of the maximum load current. But setting the peak-to-peak inductor ripple current ΔI_{\perp} between 20%~50% of the maximum load current is also acceptable. Then the inductance can be calculated with the following equation:

$$\Delta I_{L} = 0.3 \times I_{OUT(MAX)}$$
(8)

$$L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN} \times F_{OSC} \times \Delta I_{I}}$$
(9)

To guarantee the required output current, the inductor needs a saturation current rating and a thermal rating that exceeds I_L (peak current). These are minimum requirements. To maintain control of inductor current in overload and short circuit conditions, some applications may desire current ratings up to the current limit value.


Since DDR5 on DIMM has layout space constraints on the power management IC on the DIMM and surrounding components such as inductors and input/output capacitors, the mechanical specifications for standard inductors are defined in Table 7 and Table 8.

Electrical specifications include inductance, maximum DCR, maximum ACR, and minimum inductance requirements after specified operating current de-rating. DIMM vendors can select inductors according to Table 9.

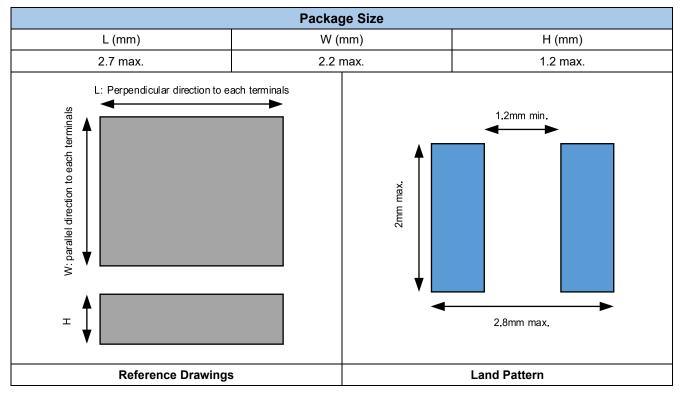

Since the inductor size is fixed, the trade-off between efficiency and transient response is the main consideration in selection. In general, the inductance of SWA and SWB is recommended to be chosen between 0.47μ H and 0.68μ H for a 1.1V output rail. The output voltage rail of SWC is 1.8V, and the inductor is recommended to be selected between 1.0μ H and 1.5μ H.

Table 8. SWC Inductor Mechanical Specifications

Table 9. Inductor Electrical Specification

Output inductor	L @ 0.5-1 MHz; 0 Bias (μH)	Max DCR (mΩ)	Max ACR @ 1MHz (mΩ)	Min L @ 6A (μH)
SWA & SWB	0.47 ± 20%	14.5	93	0.30
SVVA & SVVB	0.68 ± 20%	18.5	113	0.38
SWC	1.0 ± 20%	48.0	182	0.56
SWC	1.5 ± 20%	75.0	300	0.82

Table 10. I Input & Output Capacitor Electrical Specification

Component	Value	Physical Size
6	4.7µF	10V / 0402
C _{IN}	0.1µF	10V / 0201
0	22µF (x2)	10V / 0402
Cina	0.1µF	10V / 0201
Сілв	22µF (x2)	10V / 0402
CINB	0.1µF	10V / 0201
0	22µF (x2)	10V / 0402
Cinc	0.1µF	10V / 0201
C_{B1} , C_{B2} , C_{B3}	0.1µF	10V / 0201
Соита	47µF (x2)	6.3V / 0603
Соитв	47µF (x2)	6.3V / 0603
Соитс	47µF (x2)	6.3V / 0603
Cdista	350µF	6.3V
Сліятв	350µF	6.3V
C _{DISTC}	150µF	6.3V
Contraction	4.7µF	6.3V / 0402
Cout_1.8v	0.1µF	6.3V / 0201
Course of the second se	4.7µF	6.3V / 0402
Cout_1.0V	0.1µF	6.3V / 0201

Note that capacitors C_{DISTA}, C_{DISTB} and C_{DISTC} represent the lump sum of distributed capacitance across the entire DIMM.

8 Register Description

8.1 Register Attribute Definition

Attribute	Abbreviation	Description
Read Only	RO	This bit can be read by host. Writes have no effect.
Read / Write	RW	This bit can be read or written by host.
Write Only	WO	This bit can only be written by host. Read from this bit returns"0".
Reserved	RV	This bit is reserved for future expansion and its value must not be modified by
		host. The bit will return"0" when read. Write has no effect.
Write 1 Only	10	This bit can only be set (i.e. write"1") but not reset (i.e. write"0"). Write "0" has no
		effect.
Protected	Р	This bit is protected by the password. This bit cannot be read or written to unless
		the password code has been written into the password registers.
Persistent	E	This bit is persistent during power cycle.

8.2 Register Map Breakdown

Register Range	Region	Description
0x15 - 0x2F,	Liest Design	Host accessible registers.
0x32	Host Region	Register modification is NOT allowed in Secure Mode.
	DIMM Vendor Region	Non-Volatile Memory.
		These registers require password for read access. Access to these
		registers without correct password will return all data as '0'.
0x40 - 0x6F		These registers require complete power cycle before it takes in effect.
		Changing these registers under normal operation is considered an
		illegal operation.
		Register modification is NOT allowed in Secure Mode.
0x20 - 0x2D	Host Region	Registers are copied from DIMM Vender Region setting at power-on.

8.3 Host Region Register Map

Register	Attribute	Description
0x00	RV	R00 [7:0] - Reserved
0x01	RV	R01 [7:0] - Reserved
0x02	RV	R02 [7:0] - Reserved
0x03	RV	R03 [7:0] - Reserved
0x04	ROE	R04 [7] Global Error Count
		R04 [6] Global Error Log - Buck OV or UV
		R04 [5] Global Error Log - VIN_Bulk OV
		R04 [4] Global Error Log - Critical Temperature
		R04 [3:0] Reserved
0x05	ROE	R05 [7] Reserved
		R05 [6] Power-On Reset - SWA Power Not Good

GD30MP1020

Register	Attribute	Description
		R05 [5] Reserved
		R05 [4:3] Power-On Reset - SWB & SWC Power Not Good
	R05 [2:0] Power-On Reset - High Level Error Log Code	
		R06 [7] PMIC Power-On - SWA Under-Voltage Lockout
	ROE	R06 [6] Reserved
		R06 [5:4] PMIC Power-On - SWB & SWC Under-Voltage Lockout
0x06		R06 [3] PMIC Power-On - SWA Over-Voltage
		R06 [2] Reserved
		R06 [1:0] PMIC Power-On - SWB & SWC Over-Voltage
0x07	RV	R07 [7:0] Reserved
		R08 [7] Reserved
		R08 [6] Critical Temperature Shutdown Status
		R08 [5] SWA Output Power Good Status
0x08	RO	R08 [4] Reserved
		R08 [3:2] SWB, SWC Output Power Good Status
		R08 [1] Reserved
		R08 [0] VIN_Bulk Input Over-Voltage Status
		R09 [7] PMIC High Temperature Warning Status
		R09 [6] Reserved
		R09 [5] VOUT_1.8V Output Power Good Status
0x09	RO	R09 [4] Reserved
		R09 [3] SWA High Output Current Consumption Warning Status
		R09 [2] Reserved
		R09 [1:0] SWB, SWC High Output Current Consumption Warning Status
		R0A [7] SWA Output Over-Voltage Status
		R0A [6] Reserved
	RO	R0A [5:4] SWB, SWC Output Over-Voltage Status
0x0A		R0A [3] PEC Error Status
		R0A [2] Parity Error Status
		R0A [1] IBI Status
		R0A [0] Reserved
		R0B [7] SWA Output Current Limiter Warning Status
		R0B [6] Reserved
		R0B [5:4] SWB, SWC Output Current Limiter Warning Status
0x0B	RO	R0B [3] SWA Output Under-Voltage Lockout Status
		R0B [2] Reserved
		R0B [1:0] SWB, SWC Output Current Limiter Warning Status
0x0C	RO	R0C [7:0] SWA Output Current or Power or Total Output Power Measurement
0x0D	RV	R0D [7:0] Reserved
	RO	R0E [7:6] Reserved
0x0E		R0E [5:0] SWB Output Current or Power Measurement
0x0F	RO	R0F [7:6] Reserved
0		

GD30MP1020

Register	Attribute	Description
		R0F [5:0] SWC Output Current or Power Measurement
0x10		R10 [7:6] Reserved
	10	R10 [5] Clear SWA Output Power Good Status
		R10 [4] Reserved
		R10 [3:2] Clear SWB, SWC Output Power Good Status
		R10 [1] Reserved
		R10 [0] Clear VIN_Bulk Input Over-Voltage Status
	10	R11 [7] Clear PMIC High Temperature Warning Status
		R11 [6] Reserved
		R11 [5] Clear VOUT_1.8V Output Power Good Status
0x11		R11 [4] Reserved
		R11 [3] Clear SWA High Output Current Consumption Warning Status
		R11 [2] Reserved
		R11 [1:0] Clear SWB, SWC High Output Current Consumption Warning Status
		R12 [7] Clear SWA Output Over-Voltage Status
		R12 [6] Reserved
010	10	R12 [5:4] Clear SWB, SWC Output Over-Voltage Status
0x12	10	R12 [3] Clear PEC Error
		R12 [2] Clear Parity Error
		R12 [1:0] Reserved
		R13 [7:4] Clear SWA Output Current Limiter Warning Status
		R13 [6] Reserved
0.42	10	R13 [5:4] Clear SWB, SWC Output Current Limiter Warning Status
0x13	10	R13 [3] Clear SWA Output Under-Voltage Lockout Status
		R13 [2] Reserved
		R13 [1:0] Clear SWB, SWC Output Under-Voltage Lockout Status
		R14 [7:3] Reserved
014		R14 [2] Clear VOUT_1.0V Output Power Good Status
0x14	RW	R14 [1] Reserved
		R14 [0] Clear Global Status
	RW	R15 [7:6] Reserved
		R15 [5] Mask SWA Output Power Good Status
0.45		R15 [4] Reserved
0x15		R15 [3:2] Mask SWB, SWC Output Power Good Status
		R15 [1] Reserved
		R15 [0] Mask VIN_Bulk Input Over-Voltage Status
	RW	R16 [7] Mask PMIC High Temperature Warning Status
		R16 [6] Reserved
0x16		R16 [5] Mask VOUT_1.8V Output Power Good Status
		R16 [4] Reserved
		R16 [3:0] Mask SWA High Output Current Consumption Warning Status
		R16 [2] Reserved

Register	Attribute	Description
		R16 [1:0] Mask SWB, SWC High Output Current Consumption Warning Status
		R17 [7] Mask SWA Output Over-Voltage
		R17 [6] Reserved
0.47		R17 [5:4] Mask SWB, SWC Output Over-Voltage
0x17	RW	R17 [3] Mask PEC Error Status
		R17 [2] Mask Parity Error Status
		R17 [1:0] Reserved
		R18 [7] Mask SWA Output Current Limiter Warning Status
		R18 [6] Reserved
019		R18 [5:4] Mask SWB, SWC Output Current Limiter Warning Status
0x18	RW	R18 [3] Mask SWA Output Under-Voltage Lockout Status
		R18 [2] Reserved
		R18 [3:0] Mask SWB, SWC Output Under-Voltage Lockout Status
		R19 [7:3] Reserved
0x19	RW	R19 [2] Mask VOUT_1.0 V Output Power Good Status
		R19 [1:0] Reserved
		R1A [7:5] Reserved
		R1A [4] Quiescent Power State Entry Enable
0.44	RW	R1A [3] Reserved
0x1A		R1A [2] VOUT_1.8 V Power Good Threshold Voltage
		R1A [1] Output Power Select
		R1A [0] VOUT_1.0 V Power Good Threshold Voltage
		R1B [7] VIN_Bulk Input Over-Voltage Threshold
		R1B [6] Current or Power Meter Select
0.40		R1B [5] Reserved
0x1B	RW	R1B [4] Global Mask PWR_GOOD Output Pin
		R1B [3] GSI_n Pin Enable
		R1B [2:0] PMIC High Temperature Warning Threshold
0x1C	RV	R1C [7:0] Reserved
0x1D	RV	R1D [7:0] Reserved
0x1E	RV	R1E [7:0] Reserved
0x1F	RV	R1F [7:0] Reserved
		R20 [7:6] SWA Output Current Limiter Warning Threshold
0.00		R20 [5:4] Reserved
0x20	RW	R20 [3:2] SWB Output Current Limiter Warning Threshold
		R20 [1:0] SWC Output Current Limiter Warning Threshold
		R21 [7:1] SWA Voltage Setting
0x21	RW	R21 [0] Reserved
		R22 [7:6] SWA Power Good High-Side Threshold
		R22 [5:4] SWA Over-Voltage Threshold
0x22	RW	R22 [3:2] SWA Under-Voltage Lockout Threshold
		R22 [1:0] SWA Soft-Stop Time

Register	Attribute	Description
0x23	RV	R23 [7:0] Reserved
0x24	RV	R24 [7:0] Reserved
0.425		R25 [7:1] SWB Voltage Setting
0x25	RW	R25 [0] SWB Power Good Low-Side Threshold
		R26 [7:6] SWB Power Good High-Side Threshold
0.426		R26 [5:4] SWB Over-Voltage Threshold
0x26	RW	R26 [3:2] SWB Under-Voltage Lockout Threshold
		R26 [1:0] SWB Soft-Stop Time
007		R27 [7:1] SWC Voltage Setting
0x27	RW	R27 [0] Reserved
		R28 [7:6] SWC Power Good High-Side Threshold
0.00		R28 [5:4] SWC Over-Voltage Threshold
0x28	RW	R28 [3:2] SWC Under-Voltage Lockout Threshold
		R28 [1:0] SWC Soft-Stop Time
		R29 [7:6] SWA Mode Select
0x29	RW	R29 [5:4] SWA Switching Frequency
		R29 [3:0] Reserved
		R2A [7:6] SWB Mode Select
		R2A [5:4] SWB Switching Frequency
0x2A	RW	R2A [3:2] SWC Mode Select
		R2A [1:0] SWC Switching Frequency
		R2B [7:6] VOUT_1.8 V LDO Setting
		R2B [5:3] Reserved
0x2B	RW	R2B [2:1] VOUT_1.0 V LDO Setting
		R2B [0] Reserved
		R2C [7:5] SWA Soft-Start Time
0x2C	RW	R2C [4:0] Reserved
		R2D [7:5] SWB Soft-Start Time
		R2D [4] Reserved
0x2D	RW	R2D [3:1] SWC Soft-Start Time
		R2D [0] Reserved
		R2E [7:3] Reserved
0x2E	RW	R2E [2:0] PMIC Shutdown temperature threshold
		R2F [7] Reserved
		R2F [6] SWA Enable
		R2F [5] Reserved
0x2F	RW	R2F [4:3] SWB, SWC Enable
		R2F [2] Secure or Programmable Mode Select
		R2F [1:0] Mask Bits Register Control
		R30 [7] ADC Enable R30 [6:3] ADC Select
0x30	RW	R30 [2] Reserved
		R30 [1:0] ADC Register Update Frequency

GD30MP1020

Register	Attribute	Description
0x31	RO	R31 [7:0] ADC Read Out
		R32 [7] VR Enable
		R32 [6] Management Interface Selection
0x32	RW, RO[6]	R32 [5] PWR_GOOD Signal IO Type
		R32 [4:3] PMIC Power Good Output Signal Control
		R32 [2:0] Reserved
		R33 [7:5] Temperature Measurement
0,422	PO	R33 [4:3] Reserved
0x33	RO	R33 [2] VOUT_1.0V Output Power Good Status
		R33 [1:0] Reserved
		R34 [7] PEC Enable
		R34 [6] IBI Enable
0.24	DO	R34 [5] Parity Disable
0x34	RO	R34 [4] Reserved
		R34 [3:1] HID_CODE
		R34 [0] Reserved
		R35 [7] Error Injection Enable
0.425		R35 [6:4] Rail Selection
0x35	RW	R35 [3] Over and Under-Voltage Select
		R35 [2:0] Misc. Error Injection Type
0x36	RV	R36 [7:0] Reserved
0x37	WO	R37 [7:0] Password Lower Byte 0
0x38	WO	R38 [7:0] Password Lower Byte 1
0x39	RW	R39 [7:0] Command Codes
		R3A [7] Reserved
		R3A [6] Default Read Address Pointer Enable
0x3A	RW	R3A [5:4] Default Read Address Pointer Selection
		R3A [3:2] Burst Length for Default Read Address Pointer Mode in PEC Enabled Mode
		R3A [1:0] Reserved
		R3B [7:6] Reserved
0x3B	ROE	R3B [5:4] Major Revision ID
UX3D	RUE	R3B [3:1] Minor Revision ID
		R3B [0] PMIC Current Capability
0x3C	ROE	R3C [7:0] VENDOR_ID_BYTE0
0x3D	ROE	R3D [7:0] VENDOR_ID_BYTE1
0x3E	RV	R3E [7:0] Reserved
0x3F	RV	R3F [7:0] Reserved

8.4 DIMM Region Register Map

Register	Attribute	Description
0x40	RWPE	R40 [7:0] Power-On Sequence - Configuration 0
0x41	RWPE	R41 [7:0] Power-On Sequence - Configuration 1

Register	Attribute	Description
0x42	RWPE	R42 [7:0] Power-On Sequence - Configuration 2
0x43	RV	R43 [7:0] Reserved
0x44	RV	R44 [7:0] Reserved
0.45		R45 [7:1] SWA Voltage Setting
0x45	RWPE	R45 [0] SWA Power Good Low-Side Threshold
		R46 [7:6] Reserved
0.46		R46 [5:4] SWA Over-Voltage Threshold
0x46	RWPE	R46 [3:2] SWA Under-Voltage Lockout Threshold
		R46 [1:0] SWA Soft-Stop Time
0x47	RV	R47 [7:0] Reserved
0x48	RV	R48 [7:0] Reserved
		R49 [7:1] SWB Voltage Setting
0x49	RWPE	R49 [0] SWB Power Good Low-Side Threshold
		R4A [7:6] Reserved
		R4A [5:4] SWB Over-Voltage Threshold
0x4A	RWPE	R4A [3:2] SWB Under-Voltage Lockout Threshold
		R4A [1:0] SWB Soft-Stop Time
		R4B [7:1] SWC Voltage Setting
0x4B	RWPE	R4B [0] SWC Power Good Low-Side Threshold
		R4C [7:6] Reserved
		R4C [5:4] SWC Over-Voltage Threshold
0x4C	RWPE	R4C [3:2] SWC Under-Voltage Lockout Threshold
		R4C [1:0] SWC Soft-Stop Time
		R4D [7:6] SWA Mode Select
0x4D	RWPE	R4D [5:4] SWA Switching Frequency
		R4D [3:0] Reserved
		R4E [7:6] SWB Mode Select
		R4E [5:4] SWB Switching Frequency
0x4E	RWPE	R4E [3:2] SWC Mode Select
		R4E [1:0] SWC Switching Frequency
		R4F [7:1] Reserved
0x4F	RWPE	R4F [0] SWA and SWB Single or Dual Phase Regulator Mode Select
		R50 [7:6] SWA Output Current Limiter Warning Threshold
		R50 [5:4] Reserved
0x50	RWPE	R50 [3:2] SWB Output Current Limiter Warning Threshold
		R50 [1:0] SWC Output Current Limiter Warning Threshold
		R51 [7:6] VOUT_1.8V LDO Output Voltage Setting
		R51 [5:3] Reserved
0x51	RWPE	R51 [2:1] VOUT_1.0V LDO Voltage Setting
		R51 [0] Reserved
0x52 – 0x57	RV	R52 [7:0] - R57 [7:0] Reserved
0x58	RWPE	R58 [7:0] Power Off Sequence - Configuration 0

GD30MP1020

Register	Attribute	Description
0x59	RWPE	R59 [7:0] Power Off Sequence - Configuration 1
0x5A	RWPE	R5A [7:0] Power Off Sequence - Configuration 2
0x5B	RV	R5B [7:0] Reserved
0x5C	RV	R5C [7:0] Reserved
0x5D	RWPE	R5D [7:5] SWA Soft-Start Time
0x5D		R5D [4:0] Reserved
		R5E [7:5] SWB Soft-Start Time
0x5E		R5E [4] Reserved
UXDE	RWPE	R5E [3:1] SWC Soft-Start Time
		R5E [0] Reserved
R5F-R6F	RV	R5F [7:0] to R6F [7:0] Reserved

8.5 Register Definition

8.5.1 Host Region Registers

R00 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R00 [7:0]: Reserved		

R01 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R01 [7:0]: Reserved		

R02 - Res	R02 - Reserved					
Bits	Attribute	Default	Description			
7:0	RV	0	R02 [7:0]: Reserved			

R03 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R03 [7:0]: Reserved		

R04 - Global Error Log					
Bits	Attribute	Default	Description		
		0	R04 [7]: GLOBAL_ERROR_COUNT		
7	ROF		Global Error Count Since Last Erase Operation		
1	KÜE		0 = No Error or Only 1 Error Since Last Erase Operation		
			1 = > 1 Error Count since last Erase Operation		
	ROE	ROE 0	R04 [6]: GLOBAL_ERROR_LOG_BUCK_OV_OR_UV		
6			Global Error Log History for Buck Regulator Output Over-Voltage or Under- Voltage		
0			0 = No Error Occurred		
			1 = Error Occurred		

R04 - Glo	R04 - Global Error Log					
Bits	Attribute	Default	Description			
			R04 [5]: GLOBAL_ERROR_LOG_VIN_BULK_OVER_VOTLAGE			
5	ROF	0	Global Error Log History for VIN_BULK Over-Voltage			
5	RUE		0 = No Error Occurred			
			1 = Error Occurred			
		0	R04 [4]: GLOBAL_ERROR_LOG_CRITICAL_TEMPERATURE			
4	ROF		Global Error Log History for Critical Temperature			
4	RUE		0 = No Error Occurred			
			1 = Error Occurred			
3:0	RV	0	R04 [3:0]: Reserved			

R05 - Pov	wer Good S	Signal Co	ntrol
Bits	Attribute	Default	Description
7	RV	0	R05 [7]: Reserved
			R05 [6]: SWA_POWER_GOOD
6	ROE	0	PMIC Power-On - SWA Power Not Good
0	RUE	0	0 = Normal Power-On
			1 = SWA Power Not Good
5	RV	0	R05 [5]: Reserved
			R05 [4]: SWB_POWER_GOOD
4	ROE	0	PMIC Power-On - SWB Power Not Good
4	RUE	0	0 = Normal Power-On
			1 = SWB Power Not Good
			R05 [3]: SWC_POWER_GOOD
3	ROE	0	PMIC Power-On - SWC Power Not Good
5	NUE	0	0 = Normal Power-On
			1 = SWC Power Not Good
			R05 [2:0]: PMIC_ERROR_LOG
			PMIC Power-On - High Level Status Bit to Indicate Last Known Power Cycle or System
			Reset
			000 = Normal Power-On
		0	001 = Reserved
2:0	ROE		010 = Buck Regulator Output Over or Under-Voltage
			011 = Critical Temperature
			100 = VIN_Bulk Input Over-Voltage
			101 = Reserved
			110 = Reserved
			111 = Reserved

R06 - UV	06 - UVLO Function Control					
Bits	Attribute	Default	Description			
			R06 [7]: SWA_UNDER_VOLTAGE_LOCKOUT			
7	ROE	0	PMIC Power-On - SWA Under-Voltage Lockout			
1	RUE	0	0 = Normal Power-On			
			1 = Power-On - SWA Under-Voltage Lockout			
6	RV	0	R06 [6]: Reserved			
			R06 [5]: SWB_UNDER_VOLTAGE_LOCKOUT			
F	DOF	0	PMIC Power-On - SWB Under-Voltage Lockout			
5	ROE	0	0 = Normal Power-On			
			1 = SWB Under-Voltage Lockout			
			R06 [4]: SWC_UNDER_VOLTAGE_LOCKOUT			
	DOF	0	PMIC Power-On - SWC Under-Voltage Lockout			
4	ROE		0 = Normal Power-On			
			1 = SWC Under-Voltage Lockout			
			R06 [3]: SWA_OVER_VOLTAGE			
2	DOF	0	PMIC Power-On - SWA Over-Voltage			
3	ROE	0	0 = Normal Power-On			
			1 = SWA Over-Voltage			
2	RV	0	R06 [2]: Reserved			
			R06 [1]: SWB_OVER_VOLTAGE			
4	ROE	0	PMIC Power-On - SWB Over-Voltage			
1	RUE	0	0 = Normal Power-On			
			1 = SWB Over-Voltage			
			R06 [0]: SWC_OVER_VOLTAGE			
0	DOF	0	PMIC Power-On - SWC Over-Voltage			
0	RUE	ROE 0 0 = Normal Power-On	0 = Normal Power-On			
			1 = SWC Over-Voltage			

R07 - Res	R07 - Reserved				
Bits	Attribute	Default	Description		
7:0	RV	0	R07 [7:0]: Reserved		

R08 - Pov	R08 - Power Good Status				
Bits	Attribute	Default	Description		
7	RV	0	R08 [7]: Reserved		
		0	R08 [6]: CRITICAL_TEMP_SHUTDOWN_STATUS		
6	RO		Critical Temperature Shutdown Status		
0	κυ		0 = No Critical Temperature Shutdown		
			1 = Critical Temperature Shutdown		
	RO	0	R08 [5]: SWA_OUTPUT_POWER_GOOD_STATUS		
5			Switch Node A Output Power Good Status		
			0 = Power Good		

R08 - Pov	R08 - Power Good Status				
Bits	Attribute	Default	Description		
			1 = Power Not Good		
4	RO	0	R08 [4]: Reserved		
			R08 [3]: SWB_OUTPUT_POWER_GOOD_STATUS		
3	RO	0	Switch Node B Output Power Good Status		
3	κυ	0	0 = Power Good		
			1 = Power Not Good		
			R08 [2]: SWC_OUTPUT_POWER_GOOD_STATUS		
2	RO	0	Switch Node C Output Power Good Status		
2	κυ	0	0 = Power Good		
			1 = Power Not Good		
1	RO	0	R08 [1]: Reserved		
			R08 [0]: VIN_BULK_INPUT_OVER_VOLTAGE_STATUS		
0	RO		VIN_BULK Input Supply Over-Voltage Status		
0	RU	0	0 = No Over-Voltage		
			1 = Over-Voltage		

R09 - Hig	R09 - High Temperature and Current Warning Status				
Bits	Attribute	Default	Description		
			R09 [7]: PMIC_HIGH_TEMP_WARNING_STATUS		
7	RO	0	PMIC High Temperature Warning Status		
1	κυ	0	0 = Temperature Below the Warning Threshold		
			1 = Temperature Exceeded the Warning Threshold		
6	RV	0	R09 [6]: Reserved		
			R09 [5]: VOUT_1.8V_OUTPUT_POWER_GOOD_STATUS		
F	RO	0	VOUT_1.8V LDO Output Power Good Status2		
5	ĸu	0	0 = Power Good		
			1 = Power Not Good		
4	RV	0	R09 [4]: Reserved		
			R09[3]: SWA_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATU S		
2	RO		Switch Node A High Output Current Consumption Warning Status		
3	RU	0	0 = No High Current Consumption Warning		
			1 = High Current Consumption Warning		
2	RV	0	R09 [2]: Reserved		
			R09 [1]: SWB_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATU S		
1	RO	0	Switch Node B High Output Current Consumption Warning Status		
I	κυ	0	0 = No High Current Consumption Warning		
			1 = High Current Consumption Warning		
			R09 [0]: SWC_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATU S		
0	RO	0	Switch Node C High Output Current Consumption Warning Status		
0	ΝU	U	0 = No High Current Consumption Warning		
			1 = High Current Consumption Warning		

R0A - OV	DA - OVP and Error Status					
Bits	Attribute	Default	Description			
			R0A [7]: SWA_OUTPUT_OVER_VOLTAGE_STATUS			
7	RO	0	Switch Node A Output Over-Voltage Status			
1	ĸu	0	0 = No Over-Voltage			
			1 = Over-Voltage			
6	RV	0	R0A [6]: Reserved			
			R0A [5]: SWB_OUTPUT_OVER_VOLTAGE_STATUS			
5	RO	0	Switch Node B Output Over-Voltage Status			
5	ĸu	0	0 = No Over-Voltage			
			1 = Over-Voltage			
			R0A [5]: SWC_OUTPUT_OVER_VOLTAGE_STATUS			
4	RO	0	Switch Node C Output Over-Voltage Status			
4	ĸu		0 = No Over-Voltage			
			1 = Over-Voltage			
			R0A [3]: PEC_ERROR_STATUS			
3	RO	0	Packet Error Code Status			
5	κυ	0	0 = No PEC Error			
			1 = PEC Error			
			R0A [2]: PARITY_ERROR_STATUS			
2	RO	0	T Bit Parity Error Status			
2	κυ	0	0 = No Parity Error			
			1 = Parity Error			
			R0A [1]: IBI_STATUS			
1	RO		In Band Interrupt Status			
	ΝU	0	0 = No Pending IBI			
			1 = Pending IBI			
0	RV	0	R0A [0]: Reserved			

R0B - Cu	R0B - Current Limit and UVLO Status				
Bits	Attribute	Default	Description		
			R0B [7]: SWA_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
7	RO	0	Switch Node A Output Current Limiter Warning Status		
1	κυ	0	0 = No Current Limiter Event		
			1 = Current Limiter Event		
6	RV	0	R0B [6]: Reserved		
		0	R0B [5]: SWB_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
5	RO		Switch Node B Output Current Limiter Warning Status		
5	κυ		0 = No Current Limiter Event		
			1 = Current Limiter Event		
	RO	0	R0B [4]: SWC_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
4			Switch Node C Output Current Limiter Warning Status		
			0 = No Current Limiter Event		

R0B - Cu	rrent Limit	and UVL	O Status
Bits	Attribute	Default	Description
			1 = Current Limiter Event
			R0B [3]: SWA_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
3	RO	0	Switch Node A Output Under-Voltage Lockout Status
5	RU	0	0 = No Under-Voltage Lockout
			1 = Under-Voltage Lockout
2	RV	0	R0B [2]: Reserved
			R0B [1]: SWB_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
1	RO	0	Switch Node B Output Under-Voltage Lockout Status
1	RU	0	0 = No Under-Voltage Lockout
			1 = Under-Voltage Lockout
			R0B [0]: SWC_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
0	RO	0	Switch Node C Output Under-Voltage Lockout Status
0		0	0 = No Under-Voltage Lockout
			1 = Under-Voltage Lockout

Description _OUTPUT_CURRENT_POWER_MEASUREMENT
_OUTPUT_CURRENT_POWER_MEASUREMENT
 [1] = 0, Dutput Current or Output Power Measurement. idefined 125A or 125mW 25A or 250mW 375A or 375mW 36A or 500mW 325A or 625mW 375A or 625mW 375A or 875mW 30A or 1000mW 125A or 1125mW 75A or 6875mW 30A or 7000mW 25A or 7125mW 25A or 7375mW

R0C - SW	A Current	& Power	Measurement
Bits	Attribute	Default	Description
			All other encodings are reserved.
			If Register R1A[1] = 1,
			Sum of power measurement for Switch Outputs SWA, SWB and SWC.
			0000 0000 = Undefined
			0000 0001 = 125mW
			0000 0010 = 250mW
			0000 0011 = 375mW
			0000 0100 = 500mW
			1111 1100 = 31500mW
			1111 1101 = 31625mW
			1111 1110 = 31750mW
			1111 1111 ≧ 31875mW

R0D - Reserved				
Bits	Attribute	Default	Description	
7:0	RV	0	R0D [7:0]: Reserved	

R0E - SW	R0E - SWB Current & Power Measurement				
Bits	Attribute	Default	Description		
7:6	RV	0	R0E [7:6]: Reserved		
			R0E [5:0]: SWB_OUTPUT_CURRENT_POWER_MEASUREMENT		
			Switch Node B Output Current or Output Power Measurement.		
			000000 = Undefined		
			000001 = 0.125A or 125mW		
		0	000010 = 0.25A or 250mW		
	RO		000011 = 0.375A or 375mW		
			000100 = 0.5A or 500mW		
			000101 = 0.625A or 625mW		
5:0			000110 = 0.75A or 750mW		
5.0			000111 = 0.875A or 875mW		
			001000 = 1.0A or 1000mW		
			001001 = 1.125A or 1125mW		
			001010 = 1.25A or 1250mW		
			110111 = 6.875A or 6875mW		
			111000 = 7.0A or 7000mW		
			111001 = 7.125A or 7125mW		
			111010 = 7.25A or 7250mW		

R0E - SW	R0E - SWB Current & Power Measurement			
Bits	Attribute	Default	Description	
			111011 = 7.375A or 7375mW	
			111100 = 7.5A or 7500mW	
			111101 = 7.625A or 7625mW	
			111110 = 7.75A or 7750mW	
			111111 ≧ 7.875A or 7875mW	

R0F - SW	C Current	& Power	Measurement
Bits	Attribute	Default	Description
7:6	RV	0	R0F [7:6]: Reserved
			R0F [5:0]: SWC_OUTPUT_CURRENT_POWER_MEASUREMENT
			Switch Node C Output Current or Output Power Measurement.
			000000 = Undefined
			000001 = 0.125A or 125mW
			000010 = 0.25A or 250mW
			000011 = 0.375A or 375mW
			000100 = 0.5A or 500mW
			000101 = 0.625A or 625mW
			000110 = 0.75A or 750mW
			000111 = 0.875A or 875mW
			001000 = 1.0A or 1000mW
5:0	RO	0	001001 = 1.125A or 1125mW
			001010 = 1.25A or 1250mW
			110111 = 6.875A or 6875mW
			111000 = 7.0A or 7000mW
			111001 = 7.125A or 7125mW
			111010 = 7.25A or 7250mW
			111011 = 7.375A or 7375mW
			111100 = 7.5A or 7500mW
			111101 = 7.625A or 7625mW
			111110 = 7.75A or 7750mW
			111111 ≧ 7.875A or 7875mW

R10 - Pov	R10 - Power Good Clear				
Bits	Attribute	Default	Description		
7:6	RV	0	R10 [7:6]: Reserved		
			R10 [5]: CLEAR_SWA_OUTPUT_POWER_GOOD_STATUS		
5	10	0	Clear SWA Output Power Good Status.		
			1 = Clear "Register R08" [5]		
4	RV	0	R10 [4]: Reserved		
3	10	0	R10 [3]: CLEAR_SWB_OUTPUT_POWER_GOOD_STATUS		

R10 - Power Good Clear					
Bits	Attribute	Default	Description		
			Clear SWB Output Power Good Status.		
			1 = Clear "Register R08" [3]		
			R10 [2]: CLEAR_SWC_OUTPUT_POWER_GOOD_STATUS		
2	10	0	Clear SWC Output Power Good Status.		
			1 = Clear "Register R08" [2]		
1	RV	0	R10 [1]: Reserved		
			R10 [0]: CLEAR_VIN_BULK_INPUT_OVER_VOLTAGE_STATUS		
0	10	0	Clear VIN_BULK Input Supply Over-Voltage Status.		
			1 = Clear "Register R08" [0]		

R11 - Hig	R11 - High Temperature and Current Warning Status Clear					
Bits	Attribute	Default	Description			
			R11 [7]: CLEAR_PMIC_HIGH_TEMP_WARNING_STATUS			
7	10	0	Clear PMIC High Temperature Warning Status.			
			1 = Clear "Register R09" [7]			
6	RV	0	R11 [6]: Reserved			
			R11 [5]: CLEAR_VOUT_1.8V_OUTPUT_POWER_GOOD_STATUS			
5	10	0	Clear VOUT_1.8V Output Power Good Status			
			1 = Clear "Register R09" [5]			
4	RV	0	R11 [4]: Reserved			
	10	0	R11 [3]:			
3			CLEAR_SWA_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATUS			
3			Clear Switch Node A High Output Current Consumption Warning Status.			
			1 = Clear "Register R09" [3]			
2	RV	0	R11 [2]: Reserved			
			R11 [1]:			
1	10	0	CLEAR_SWB_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATUS			
I I	10	0 0	Clear Switch Node B High Output Current Consumption Warning Status.			
			1 = Clear "Register R09" [1]			
			R11 [0]:			
0	10	0	CLEAR_SWC_HIGH_OUTPUT_CURRENT_CONSUMPTION_WARNING_STATUS			
0	10	0	Clear Switch Node C High Output Current Consumption Warning Status.			
			1 = Clear "Register R09" [0]			

R12 - OVP Status Clear				
Attribute	Default	Description		
		R12 [7]: CLEAR_SWA_OUTPUT_OVER_VOLTAGE_STATUS		
10	0	Clear Switch Node A Output Over-Voltage Status.		
		1 = Clear "Register R0A" [7]		
RV	0	R12 [6]: Reserved		
10	0	R12 [5]: CLEAR_SWB_OUTPUT_OVER_VOLTAGE_STATUS		
	10 RV	10 0 RV 0		

R12 - OV	R12 - OVP Status Clear				
Bits	Attribute	Default	Description		
			Clear Switch Node B Output Over-Voltage Status.		
			1 = Clear "Register R0A" [5]		
			R12 [4]: CLEAR_SWC_OUTPUT_OVER_VOLTAGE_STATUS		
4	10	0	Clear Switch Node C Output Over-Voltage Status.		
			1 = Clear "Register R0A" [4]		
			R12 [3]: CLEAR_PER_ERROR_STATUS		
3	10	0	Clear PEC Error Status.		
			1 = Clear "Register 0x0A" [3]		
			R12 [2]: CLEAR_PARITY_ERROR_STATUS		
2	10	0	Clear Parity Error Status.		
			1 = Clear "Register 0x0A" [2]		
1:0	RV	0	R12 [1:0]: Reserved		

R13 - Cu	R13 - Current Limit Status Clear				
Bits	Attribute	Default	Description		
			R13 [7]: CLEAR_SWA_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
7	10	0	Clear Switch Node A Output Current Limiter Warning Status.		
			1 = Clear "Register R0B" [7]		
6	RV	0	R13 [6]: Reserved		
			R13 [5]: CLEAR_SWB_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
5	10	0	Clear Switch Node B Output Current Limiter Warning Status.		
			1 = Clear "Register R0B" [5]		
			R13 [4]: CLEAR_SWC_OUTPUT_CURRENT_LIMITER_WARNING_STATUS		
4	10	0	Clear Switch Node C Output Current Limiter Warning Status.		
			1 = Clear "Register R0B" [4]		
			R13 [3]: CLEAR_SWA_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS		
3	10	0	Clear Switch Node A Output Under-Voltage Lockout Status.		
			1 = Clear "Register R0B" [3]		
2	RV	0	R13 [2]: Reserved		
			R13 [1]: CLEAR_SWB_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS		
1	10	0	Clear Switch Node B Output Under-Voltage Lockout Status.		
			1 = Clear "Register R0B" [1]		
			R13 [0]: CLEAR_SWC_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS		
0	10	0	Clear Switch Node C Output Under-Voltage Lockout Status.		
			1 = Clear "Register R0B" [0]		

R14 - Global Clear Status					
Bits	Attribute	Default	Description		
7:3	RV	0	R14 [7:3]: Reserved		
2	10	0	R14 [2]: CLEAR_VOUT_1.0V_OUTPUT_POWER_GOOD_STATUS Clear VOUT_1.0V Output Power Good Status.		

R14 - Glo	R14 - Global Clear Status			
Bits	Attribute	Default	Description	
			1 = Clear "Register R33" [2]	
1	RV	0	R14 [1]: Reserved	
			R14 [0]: GLOBAL_CLEAR_STATUS	
0	10	0	Clear all status bits.	
			1 = Clear all status bits	

R15 - Po	R15 - Power Good Status Mask				
Bits	Attribute	Default	Description		
7:6	RV	0	R15 [6]: Reserved		
			R15 [5]: MASK_SWA_OUTPUT_POWER_GOOD_STATUS		
5	RW	1	Mask SWA Output Power Good Status Event1.		
5	LZAA.	I	0 = Do Not Mask SWA Output Power Good Status Event		
			1 = Mask SWA Output Power Good Status Event		
4	RV	0	R15 [4]: Reserved		
			R15 [3]: MASK_SWB_OUTPUT_POWER_GOOD_STATUS		
3	RW	1	Mask SWB Output Power Good Status Event1,2.		
3	RW		0 = Do Not Mask SWB Output Power Good Status Event		
			1 = Mask SWB Output Power Good Status Event		
			R15 [2]: MASK_SWC_OUTPUT_POWER_GOOD_STATUS		
2	RW	1	Mask SWC Output Power Good Status Event1.		
2	L A A	1	0 = Do Not Mask SWC Output Power Good Status Event		
			1 = Mask SWC Output Power Good Status Event		
1	RV	0	R15 [1]: Reserved		
		0	R15 [0]: MASK_VIN_BULK_INPUT_OVER_VOLTAGE_STATUS		
0	RW		Mask VIN_Bulk Input Supply Over-Voltage Status Event.		
U	KVV		0 = Do Not Mask VIN_Bulk Input Supply Over-Voltage Status Event		
			1 = Mask VIN_Bulk Input Supply Over-Voltage Status Event		

R16 - High Temperature and Current Warning Status Mask				
Bits	Attribute	Default	Description	
			R16 [7]: MASK_PMIC_HIGH_TEMP_WARNING_STATUS	
7	RW	0	Mask PMIC High Temperature Warning Status Event.	
1	Rvv	U	0 = Do Not Mask PMIC High Temperature Warning Status Event	
			1 = Mask PMIC High Temperature Warning Status Event	
6	RV	0	R16 [6]: Reserved	
		4	R16 [5]: MASK_VOUT_1.8V_OUTPUT_POWER_GOOD_STATUS	
5	RW		Mask VOUT_1.8V Output Power Good Status Event.	
5	L A A	I	0 = Do Not Mask 1.8V Output Power Good Status Event	
			1 = Mask 1.8V Output Power Good Status Event	
4	RV	0	R16 [4]: Reserved	
3	RW	0	R16 [3]: MASK_SWA_HIGH_OUTPUT_CURRENT_CONSUMPTION_	

R16 - High Temperature and Current Warning Status Mask				
Bits	Attribute	Default	Description	
			WARNING_STATUS	
			Mask Switch Node A High Output Current Consumption Warning Status Event.	
			0 = Do Not Mask Switch Node A Output Current Consumption Warning Status Event	
			1 = Mask Switch Node A Output Current Consumption Warning Status	
			Event	
2	RV	0	R16 [2]: Reserved	
		0	R16 [1]: MASK_SWB_HIGH_OUTPUT_CURRENT_CONSUMPTION_ WARNING_STATUS	
4	RW		Mask Switch Node B High Output Current Consumption Warning Status Event	
I	RW		0 = Do Not Mask Switch Node B Output Current Consumption Warning Status Event	
			1 = Mask Switch Node B Output Current Consumption Warning Status	
			Event	
			R16 [0]: MASK_SWC_HIGH_OUTPUT_CURRENT_CONSUMPTION_	
			WARNING_STATUS	
0	RW	0	Mask Switch Node C High Output Current Consumption Warning Status Event.	
0	KVV	0	0 = Do Not Mask Switch Node C Output Current Consumption Warning Status Event	
			1 = Mask Switch Node C Output Current Consumption Warning Status	
			Event	

R17 - Over Voltage and Error Status Mask				
Bits	Attribute	Default	Description	
7			R17 [7]: MASK_SWA_OUTPUT_OVER_VOLTAGE_STATUS	
	RW	0	Mask Switch Node A Output Over-Voltage Status Event.	
/		0	0 = Do Not Mask Switch Node A Output Over-Voltage Status Event	
			1 = Mask Switch Node A Output Over-Voltage Status Event	
6	RV	0	R17 [6]: Reserved	
			R17 [5]: MASK_SWB_OUTPUT_OVER_VOLTAGE_STATUS	
5	RW	0	Mask Switch Node B Output Over-Voltage Status Event2.	
5	Rvv		0 = Do Not Mask Switch Node B Output Over-Voltage Status Event	
			1 = Mask Switch Node B Output Over-Voltage Status Event	
			R17 [4]: MASK_SWC_OUTPUT_OVER_VOLTAGE_STATUS	
4	RW	0	Mask Switch Node C Output Over-Voltage Status Event.	
4		0	0 = Do Not Mask Switch Node C Output Over-Voltage Status Event	
			1 = Mask Switch Node C Output Over-Voltage Status Event	
			R17 [3]: MASK_PEC_ERROR_STATUS	
3	RW	0	Mask PEC Error Event for GSI_n output Only	
5		0	0 = Do Not Mask PEC Error Status Event	
			1 = Mask PEC Error Status	
			R17 [2]: MASK_PARITY_ERROR_STATUS	
2	RW	0	Mask Parity Error Event for GSI_n output Only	
			0 = Do Not Mask Parity Error Status Event	

R17 - Over Voltage and Error Status Mask				
Bits	Attribute	Default	Description	
			1 = Mask Parity Error Status	
1:0	RV	0	R17 [1:0]: Reserved	

R18 - Cu	rrent Limit	and UVLO	D Status Mask
Bits	Attribute	Default	Description
			R18 [7]: MASK_SWA_OUTPUT_CURRENT_LIMITER_WARNING_STATUS
7	RW	0	Mask Switch Node A Output Current Limiter Warning Status Event.
7	RVV	0	0 = Do Not Mask Switch Node A Output Current Limiter Warning Status Event
			1 = Mask Switch Node A Output Current Limiter Warning Status Event
6	RV	0	R18 [6]: Reserved
			R18 [5]: MASK_SWB_OUTPUT_CURRENT_LIMITER_WARNING_STATUS
F	RW	0	Mask Switch Node B Output Current Limiter Warning Status Event.
5	RVV	0	0 = Do Not Mask Switch Node B Output Current Limiter Warning Status Event
			1 = Mask Switch Node B Output Current Limiter Warning Status Event
			R18 [4]: MASK_SWC_OUTPUT_CURRENT_LIMITER_WARNING_STATUS
4	RW	0	Mask Switch Node C Output Current Limiter Warning Status Event.
4			0 = Do Not Mask Switch Node C Output Current Limiter Warning Status Event
			1 = Mask Switch Node C Output Current Limiter Warning Status Event
			R18 [3]: MASK_SWA_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
3	RW	0	Mask Switch Node A Output Under-Voltage Lockout Status Event.
5	RVV	0	0 = Do Not Mask Switch Node A Output Under-Voltage Lockout Status Event
			1 = Mask Switch Node A Output Under-Voltage Lockout Status Event
2	RV	0	R18 [2]: Reserved
			R18 [1]: MASK_SWB_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
1	RW	0	Mask Switch Node B Output Under-Voltage Lockout Status Event3.
1	L M	0	0 = Do Not Mask Switch Node B Output Under-Voltage Lockout Status Event
			1 = Mask Switch Node B Output Under-Voltage Lockout Status Event
			R18 [0]: MASK_SWC_OUTPUT_UNDER_VOLTAGE_LOCKOUT_STATUS
0	RW	0	Mask Switch Node C Output Under-Voltage Lockout Status Event.
0	RVV	0	0 = Do Not Mask Switch Node C Output Under-Voltage Lockout Status Event
			1 = Mask Switch Node C Output Under-Voltage Lockout Status Event

R19 – LDO 1.0V Power Good Status Mask				
Bits	Attribute	Default	Description	
7:3	RV	0	R19 [7:3]: Reserved	
	RW	1	R19 [2]: MASK_VOUT_1.0V_OUTPUT_POWER_GOOD_STATUS	
2			Mask VOUT_1.0V Output Power Good Status Event.	
2			0 = Do Not Mask 1.0V Output Power Good Status Event	
			1 = Mask 1.0V Output Power Good Status Event	
1:0	RV	0	R19 [1:0]: Reserved	

R1A - Qu	R1A - Quiescent State				
Bits	Attribute	Default	Description		
7:5	RV	000	R1A [7:5]: Reserved		
			R1A [4]: QUIESCENT_STATE_EN		
4	RW	0	PMIC Quiescent State Entry Enable		
4	L A A	0	0 = Disable		
			1 = Enable		
3	RV	0	R1A [3]: Reserved		
			R1A [2]: VOUT_1.8V_POWER_GOOD_THRESHOLD_VOLTAGE		
2	RW	0	VOUT 1.8V LDO Output Threshold Voltage for Power Good Status		
2			0 = 1.6V		
			1 = Reserved		
			R1A [1]: OUTPUT_POWER_SELECT		
1	RW	0	Switch Regulator Output Power Select		
1	L A A	0	0 = Report Power Measurement for Each Rail in R0C, R0E & R0F		
			1 = Report Total Power Measurement of Each Rail in R0C		
			R1A [0]: VLDO_1.0V_POWER_GOOD_THRESHOLD_VOLTAGE		
0	RW	0	VOUT 1.0V LDO Output Threshold Voltage for Power Good Status		
U	LZAA KARA	0	0 = -10% from the setting in "Register R51" [2:1]		
			1 = -15% from the setting in "Register R51" [2:1]		

R1B - High Temperature Warning Threshold				
Bits	Attribute	Default	Description	
			R1B [7]: VIN_BULK_OVER_VOLTAGE_THRESHOLD	
7	RW	0	VIN_Bulk Input Over-Voltage Threshold Setting For GSI_n Assertion	
1		0	0 = 5.8 V	
			1 = Reserved	
			R1B [6]: CURRENT_OR_POWER_METER_SELECT	
6	RW	0	PMIC Output Regulator Measurement - Current or Power Meter	
0	RW	0	0 = Report Current Measurements in registers	
			1 = Report Power Measurements in registers	
5	RV	0	R1B [5]: Reserved	
			R1B [4]: GLOBAL_PWR_GOOD_PIN_STATUS_MASK	
4	RW	0	Global Mask PWR_GOOD Output Pin	
4	RVV	0	0 = Not Masked	
			1 = Masked	
			R1B [3]: GSI_N_PIN_ENABLE	
3	RW	0	Enable GSI_n Pin	
5	L A A	0	0 = Disable GSI_n Pin	
			1 = Enable GSI_n Pin	
			R1B [2:0]: PMIC_HIGH_TEMPERATURE_WARNING_THRESHOLD	
2:0	RW	101	PMIC High Temperature Warning Threshold 000 = Reserved	
			001 = PMIC temperature ≥ 85ºC	

R1B - High Temperature Warning Threshold				
Bits	Attribute	Default	Description	
			010 = PMIC temperature ≥ 95ºC	
			011 = PMIC temperature ≥ 105ºC	
			100 = PMIC temperature ≥ 115ºC	
			101 = PMIC temperature ≥ 125ºC	
			110 = PMIC temperature ≥ 135ºC	
			111 = Reserved	

R1C - Reserved				
Bits	Attribute	Default	Description	
Bits 7:2	RW	011000	R1C [7:2]: SWA_OUTPUT_HIGH_CURRENT_CONSUMPTION_WARNING_THRESHOLD Switch Node A Output High Current Consumption Warning Threshold 000000 = Un-defined 000001 = > 0.125A 000010 = > 0.25A 000100 = > 0.375A 000100 = > 0.5A 000101 = > 0.625A 000101 = > 0.75A 001000 = > 1.0A 001000 = > 1.0A 001001 = > 1.125A 101011 = > 2.875A 011000 = > 3.0A 011001 = > 3.125A 110111 = > 6.875A 111000 = > 7.0A 111001 = > 7.25A 111011 = > 7.375A 111101 = > 7.375A 111101 = > 7.375A	
1:0	RV	0	111111 = > 7.875A R1C [1:0]: Reserved	

R1D - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R1D [7:0]: Reserved		

R1E - Res	R1E - Reserved					
Bits	Attribute	Default	Description			
7:2	RW	011000	R1E [7:2]: SWB_OUTPUT_HIGH_CURRENT_CONSUMPTION_WARNING_THRESHOLD Switch Node B Output High Current Consumption Warning Threshold 000000 = Un-defined 00001 = > 0.125A 000010 = > 0.25A 00011 = > 0.375A 000100 = > 0.5A 000101 = > 0.625A 000101 = > 0.625A 000101 = > 0.75A 001000 = > 1.0A 001001 = > 1.125A 110111 = > 2.875A 011000 = > 3.0A 110011 = > 7.0A 11100 = > 7.0A 111001 = > 7.25A 111101 = > 7.5A 111101 = > 7.5A 111101 = > 7.5A			
1:0	RV	0	R1E [1:0]: Reserved			

R1F - Reserved				
Bits	Attribute	Default	Description	
			R1F [7:2]:	
			SWC_OUTPUT_HIGH_CURRENT_CONSUMPTION_WARNING_THRESHOLD	
			Switch Node C Output High Current Consumption Warning Threshold	
7:2	RW	011000	000000 = Un-defined	
			000001 = > 0.125A	
			000010 = > 0.25A	
			000011 = > 0.375A	

R1F - Res	served		
Bits	Attribute	Default	Description
			000100 = > 0.5A
			000101 = > 0.625A
			000110 = > 0.75A
			000111 = > 0.875A
			001000 = > 1.0A
			001001 = > 1.125A
			010111 = > 2.875A
			011000 = > 3.0A
			011001 = > 3.125A
			110111 = > 6.875A
			111000 = > 7.0A
			111001 = > 7.125A
			111010 = > 7.25A
			111011 = > 7.375A
			111100 = > 7.5A
			111101 = > 7.625A
			111110 = > 7.75A
			111111 = > 7.875A
1:0	RV	0	R1F [1:0]: Reserved

R20 - Out	R20 - Output Current Limit & High Current Consumption Warning Threshold				
Bits	Attribute	Default	Description		
			R20 [7:6]: SWA_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING		
			For COT Mode, Ivalley_limit and Consumption Warning Threshold		
7:6	RW	00	00 = 5.0A		
7.0	L A A	00	01 = 5.5A		
			10 = 6.0A		
			11 = Reserved		
5:4	RV	00	R20 [5:4]: Reserved		
			R20 [3:2]: SWB_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING		
			For COT Mode, valley_limit and Consumption Warning Threshold		
3:2	RW	00	00 = 5.0A		
3.2	L A A		01 = 5.5A		
			10 = 6.0A		
			11 = Reserved		
			R20 [1:0]: SWC_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING		
1:0	RW	11	For COT Mode, valley_limit and Consumption Warning Threshold		
			00 = 0.5A		

R20 - Output Current Limit & High Current Consumption Warning Threshold				
Bits	Attribute	Default	Description	
			01 = 1.0A	
			10 = 1.5A	
			11 = 2.0A	

R21 - SW	R21 - SWA Voltage Setting				
Bits	Attribute	Default	Description		
			R21 [7:1]: SWA_VOLTAGE_SETTING		
			Switch Node A Output Regulator Voltage Setting		
			000 0000 = 800mV		
			000 0001 = 805mV		
		0111100	000 0010 = 810mV		
7:1	RW				
			011 1100 = 1100mV		
			111 1101 = 1425mV		
			111 1110 = 1430mV		
			111 1111 = 1435mV		
			R21 [0]: SWA_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING		
0	RW	0	Switch Node A Output Threshold Low-Side Voltage For Power Good Status		
0			0 = -5% from the setting in "Register R21," [7:1]		
			1 = -7.5% from the setting in "Register R21," [7:1]		

R22 - SW	R22 - SWA Threshold and Soft stop time				
Bits	Attribute	Default	Description		
			R22 [7:6]:		
			SWA_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING		
			Switch Node A Output Threshold High-Side Voltage "Upper bound level" For Power		
7:6	RW	01	Good Status		
7.0	L A A	01	00 = +5% from the setting in "Register R21," [7:1]		
			01 = +7.5% from the setting in "Register R21," [7:1]		
			10 = +10% from the setting in "Register R21," [7:1]		
			11 = +3% from the setting in "Register R21," [7:1]		
			R22 [5:4]: SWA_OVER_VOLTAGE_THRESHOLD_SETTING		
	RW		Switch Node A Output Regulator Threshold For Over-Voltage Status		
5:4		10	00 = +7.5% from the setting in "Register R21," [7:1]		
5.4	L A A	10	01 = +10% from the setting in "Register R21," [7:1]		
			10 = +12.5% from the setting in "Register R21," [7:1]		
			11 = +20% from the setting in "Register R21," [7:1]		
	RW		R22 [3:2]: SWA_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING		
3:2		00	Switch Node A Output Regulator Threshold For Under-Voltage Lockout Status		
			00 = -10% from the setting in "Register R21," [7:1]		

R22 - SW	R22 - SWA Threshold and Soft stop time			
Bits	Attribute	Default	Description	
			01 = -12.5% from the setting in "Register R21," [7:1]	
			10 = -7.5% from the setting in "Register R21," [7:1	
			11 = -20% from the setting in "Register R21," [7:1]	
	RW	11	R22 [1:0]: SWA_OUTPUT_SOFT_STOP_TIME	
			SWA Output Regulator Soft-Stop Time After VR Disable	
1.0			00 = 0.5ms	
1:0			01 = 1ms	
			10 = 2ms	
			11 = 4ms	

R23 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R23 [7:0]: Reserved		

R24 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R24 [7:0]: Reserved		

R25 - SW	R25 - SWB Voltage Setting				
Bits	Attribute	Default	Description		
			R25 [7:1]: SWB_VOLTAGE_SETTING		
			Switch Node B Output Regulator Voltage Setting		
			000 0000 = 800mV		
			000 0001 = 805mV		
		0111100	000 0010 = 810mV		
7:1	RW				
			011 1100 = 1100mV		
			111 1101 = 1425mV		
			111 1110 = 1430mV		
			111 1111 = 1435mV		
		0	R25 [0]: SWB_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING		
0	RW		Switch Node B Output Threshold Low-Side Voltage For Power Good Status		
0			0 = -5% from the setting in "Register R25," [7:1]		
			1 = -7.5% from the setting in "Register R25," [7:1]		

R26 - SWB Threshold and Soft stop time				
Bits	Attribute	Default	Description	
7:6	RW	01	R26 [7:6]: SWB_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING Switch Node B Output Threshold High-Side Voltage "Upper bound" For Power Good	

R26 - SW	R26 - SWB Threshold and Soft stop time					
Bits	Attribute	Default	Description			
			Status			
			00 = +5% from the setting in "Register R25," [7:1]			
			01 = +7.5% from the setting in "Register R25," [7:1]			
			10 = +10% from the setting in "Register R25," [7:1]			
			11 = +3% from the setting in "Register R25," [7:1]			
			R26 [5:4]: SWB_OVER_VOLTAGE_THRESHOLD_SETTING			
			Switch Node B Output Regulator Threshold For Over-Voltage Status			
5:4	RW	10	00 = +7.5% from the setting in "Register R25," [7:1]			
5.4	L M		01 = +10% from the setting in "Register R25," [7:1]			
			10 = +12.5% from the setting in "Register R25," [7:1]			
			11 = +20% from the setting in "Register R25," [7:1]			
			R26 [3:2]: SWB_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING			
			Switch Node B Output Regulator Threshold For Under-Voltage Lockout Status			
3:2	RW	00	00 = -10% from the setting in "Register R25," [7:1]			
3.2	L M	00	01 = -12.5% from the setting in "Register R25," [7:1]			
			10 = -7.5% from the setting in "Register R25," [7:1]			
			11 = -20% from the setting in "Register R25," [7:1]			
			R26 [1:0]: SWB_OUTPUT_SOFT_STOP_TIME			
			SWB Output Regulator Soft-Stop Time After VR Disable			
1:0		11	00 = 0.5ms			
1.0	RW	11	01 = 1ms			
			10 = 2ms			
			11 = 4ms			

R27 - SW	R27 - SWC Voltage Setting				
Bits	Attribute	Default	Description		
			R27 [7:1]: SWC_VOLTAGE_SETTING		
			Switch Node C Output Regulator Voltage Setting		
			000 0000 = 1500mV		
			000 0001 = 1505mV		
		0111100	000 0010 = 1510mV		
7:1	RW				
			011 1100 = 1800mV		
			111 1101 = 2125mV		
			111 1110 = 2130mV		
			111 1111 = 2135mV		
			R27 [0]: SWC_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING		
0	RW	0	Switch Node C Output Threshold Low-Side Voltage For Power Good Status		
0			0 = -5% from the setting in "Register R27," [7:1]		
			1 = -7.5% from the setting in "Register R27," [7:1]		

Bits	Attribute	Default	Description
			R28 [7:6]: SWC_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING
			Switch Node C Output Threshold High-Side Voltage "Upper bound" For Power Good
			Status
7:6	RW	01	00 = +5% from the setting in "Register R27" [7:1]
			01 = +7.5% from the setting in "Register R27" [7:1]
			10 = +10% from the setting in "Register R27" [7:1]
			11 = +3% from the setting in "Register R27" [7:1]
			R28 [5:4]: SWC_OVER_VOLTAGE_THRESHOLD_SETTING
		10	Switch Node C Output Regulator Threshold For Over-Voltage Status
E.4			00 = +7.5% from the setting in "Register R25" [7:1]
5:4	RW		01 = +10% from the setting in "Register R25" [7:1]
			10 = +12.5% from the setting in "Register R25" [7:1]
			11 = +20% from the setting in "Register R27" [7:1]
			R28 [3:2]: SWC_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING
			Switch Node C Output Regulator Threshold For Under-Voltage Lockout Status
3:2	RW	00	00 = -10% from the setting in "Register R25" [7:1]
3.2	RVV		01 = -12.5% from the setting in "Register R25" [7:1]
			10 = -7.5% from the setting in "Register R27" [7:1]
			11 = -20% from the setting in "Register R27" [7:1]
			R28 [1:0]: SWC_OUTPUT_SOFT_STOP_TIME
1:0			SWC Output Regulator Soft-Stop Time After VR Disable
	RW	11	00 = 1ms
	L A A	11	01 = 2ms
			10 = 4ms
			11 = 8ms

R29 - SWA FSW & Mode					
Bits	Attribute	Default	Description		
			R29 [7:6]: SWA_MODE_SELECT		
			Switch Node A Output Regulator Mode Selection		
7:6	RW	10	00 = Reserved		
7.0	KVV	10	01 = Reserved		
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)		
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)		
		00	R29 [5:4]: SWA_SWITCHING_FREQ		
			Switch Node A Output Regulator Switching Frequency (Note)		
E.A	RW		00 = 750kHz		
5:4			01 = 1000kHz		
			10 = 1250kHz		
			11 = 1500kHz		

R29 - SWA FSW & Mode				
Bits	Attribute	Default	Description	
3:0	RV	0000	R29 [3:0]: Reserved	

R2A - SW	R2A - SWB, SWC FSW & Mode					
Bits	Attribute	Default	Description			
			R2A [7:6]: SWB_MODE_SELECT			
			Switch Node B Output Regulator Mode Selection			
7:6	RW	10	00 = Reserved			
7.0	L A A	10	01 = Reserved			
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)			
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)			
			R2A [5:4]: SWB_SWITCHING_FREQ			
			Switch Node B Output Regulator Switching Frequency			
5:4	RW	00	00 = 750kHz			
5.4	RVV	00	01 = 1000kHz			
			10 = 1250kHz			
			11 = 1500kHz			
	RW		R2A [3:2]: SWC_MODE_SELECT			
			Switch Node D Output Regulator Mode Selection			
3:2		10	00 = Reserved			
5.2		10	01 = Reserved			
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)			
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)			
			R2A [1:0]: SWC_SWITCHING_FREQ			
1:0			Switch Node C Output Regulator Switching Frequency			
	RW	00	00 = 750kHz			
		00	01 = 1000kHz			
			10 = 1250kHz			
			11 = 1500kHz			

R2B - LDO Voltage Setting					
Bits	Attribute	Default	Description		
			R2B [7:6]: VOUT_1.8V _VOLTAGE_SETTING		
			VLDO_1.8V Voltage Setting:		
7.0	RW	01	00 = 1.7V		
7:6			01 = 1.8V		
			10 = 1.9V		
			11 = 2.0V		
5:3	RV	000	R2B [5:3]: Reserved		
			R2B [2:1]: VOUT_1.0V _VOLTAGE_SETTING		
2:1	RW	01	VLDO_1.0V Voltage Setting:		
			00 = 0.9V		

R2B - LDO Voltage Setting				
Bits	Attribute	Default	Description	
			01 = 1.0V	
			10 = 1.1V	
			11 = 1.2V	
0	RV	0	R2B [0]: Reserved	

R2C - SWA Soft Start Time					
Bits	Attribute	Default	Description		
			R2C [7:5]: SWA_OUTPUT_SOFT_START_TIME		
			SWA Output Regulator Soft-Start Time After VR Enable		
	RW	001	000 = 1ms		
7:5			001 = 2ms		
7.5			010 = 4ms		
			011 = 6ms		
			111 = 14ms		
4:0	RV	0	R2C [4:0]: Reserved		

R2D - SWB, SWC Soft Start Time					
Bits	Attribute	Default	Description		
			R2D [7:5]: SWB_OUTPUT_SOFT_START_TIME		
			SWB Output Regulator Soft-Start Time After VR Enable		
			000 = 1ms		
7:5	RW	001	001 = 2ms		
7.5	r.vv	001	010 = 4ms		
			011 = 6ms		
			111 = 14ms		
4	RV	0	R2D [4]: Reserved		
			R2D [3:1]: SWC_OUTPUT_SOFT_START_TIME		
			SWC Output Regulator Soft-Start Time After VR Enable		
			000 = 1ms		
3:1	RW	001	001 = 2ms		
5.1		001	010 = 4ms		
			011 = 6ms		
			111 = 14ms		
0	RV	0	R2D [0]: Reserved		

R2E - Shutdown Temp. Threshold				
Bits	Attribute	Default	Description	
7:3	RV	0	R2E [7:3]: Reserved	

its	Attribute	Default	Description
	, ternouto	Doluti	R2E [2:0]: PMIC_SHUTDOWN_TEMPERATURE_THRESHOLD
2:0		100	PMIC Shutdown Temperature Threshold 000 = PMIC Temperature ≥ 105ºC
			001 = PMIC Temperature ≥ 115°C
	RW		010 = PMIC Temperature ≥ 125ºC 011 = PMIC Temperature ≥ 135ºC
			100 = PMIC Temperature ≥ 145ºC
			101 = Reserved
			110 = Reserved
			111 = Reserved

R2F - PM	R2F - PMIC Configuration					
Bits	Attribute	Default	Description			
7	RV	0	R2F [7]: Reserved			
			R2F [6]: SWA_REGULATOR_CONTROL			
G	RW	0	Disable SWA Regulator Output			
6	RVV	0	0 = Disable Switch Node A Output Regulator			
			1 = Enable Switch Node A Output Regulator			
5	RV	0	R2F [5]: Reserved			
			R2F [4]: SWB_REGULATOR_CONTROL			
4	RW	0	Disable SWB Regulator Output			
4	RVV	0	0 = Disable Switch Node B Output Regulator			
			1 = Enable Switch Node B Output Regulator			
	RW	0	R2F [3]: SWC_REGULATOR_CONTROL			
3			Disable SWC Regulator Output			
5			0 = Disable Switch Node C Output Regulator			
			1 = Enable Switch Node C Output Regulator			
	RW		R2F [2]: SECURE_MODE			
2		0	PMIC Mode Operation			
2	L A A	0	0 = Secure Mode Operation			
			1 = Programmable Mode Operation			
			R2F [1:0]: MASK_BITS_REGISTER_CONTROL			
			Mask Bits Register Control			
			00 = Mask GSI_n Signal Only (PWR_GOOD Signal will assert)			
1:0	RW	10	01 = Mask PWR_GOOD Only (GSI_n signal will assert)			
			10 = Mask GSI_n and PWR_GOOD Signals (neither PWR_GOOD assert or GSI_n			
			signal will assert)			
			11 = Reserved			

R30 - AD	R30 - ADC Enable					
Bits	Attribute	Default	Description			
			R30 [7]: ADC_ENABLE			
7	RW	0	Enable ADC (Analog to Digital Conversion)			
I I	1.00	U	0 = Disable			
			1 = Enable			
			R30 [6:3]: ADC_SELECT			
			Input Selection for ADC Readout			
			0000 = SWA Output Voltage			
			0001 = Reserved			
			0010 = SWB Output Voltage			
6:3	RW	0	0011 = SWC Output Voltage			
0.5			0100 = Reserved			
			0101 = VIN_BULK Input Voltage			
			0110 = Reserved			
			0111 = Reserved			
			1000 = VOUT_1.8V Output Voltage			
			1001 = VOUT_1.0V Output Voltage All other encodings are reserved.			
2	RV	0	R30 [2]: Reserved			
			R30 [1:0]: ADC_REGISTER_UPDATE_FREQUENCY			
			ADC Current or Power Measurement Update Frequency			
1:0		0	00 = 1ms			
1.0	RW	0	01 = 2ms			
			10 = 4ms			
			11 = 8ms			

R31 - AD	R31 - ADC Read					
Bits	Attribute	Default	Description			
			R31 [7:0]: ADC_READ			
			ADC Output Voltage Reading (Applies to SW[A:C], VOUT_1.8V, VOUT_1.0V)			
			0000 0000 = Undefined			
			0000 0001 = 15mV			
			0000 0010 = 30mV			
7:0	RO	0	1111 1111 >= 3825mV			
			ADC Output Voltage Reading (Applies to VIN_BULK Input Voltage)			
			0000 0000 = Undefined			
			0000 0001 = 70mV			
			0000 0010 = 140mV			
			1111 1111 >= 17850mV			

R32 - PM	R32 - PMIC_EN & Mgmt Interface Selection					
Bits	Attribute	Default	Description			
			R32 [7]: VR_ENABLE			
7	RW	0	PMIC Enable			
1		0	0 = PMIC Disable			
			1 = PMIC Enable			
			R32 [6]: MANAGEMENT_INTERFACE_SELECTION			
6	RO	0	PMIC Management Bus Interface Protocol Selection			
0	RU	0	0 = I ² C Interface (Max speed 1MHZ)			
			1 = I ³ C Basic Protocol			
			R32 [5]: PWR_GOOD_IO_TYPE			
5	RW	0	PMIC PWR_GOOD Output Signal Type			
5	Rvv	0	0 = Output only			
			1 = Input and Output			
			R32 [4:3]: PMIC_PWR _OUTPUT_SIGNAL_CONTROL			
			PMIC PWR_GOOD Output Signal Control			
4:3	RW	00	0x = PMIC controls PWR_GOOD on its own based on internal status			
			10 = PWR_GOOD Output Low			
			11 = PWR_GOOD Output Float			
2:0	RV	0	R32 [2:0]: Reserved			

R33 - Ten	np_Meas 8	LDO Sta	tus
Bits	Attribute	Default	Description
			R33 [7:5]: TEMPERATURE_MEASUREMENT
			PMIC Temperature
			000 < 85°C (±5°C)
			001 = 85°C (±5°C)
7.5	DO	0	010 = 95°C (±5°C)
7:5	RO	0	011 = 105°C (±5°C)
			100 = 115°C (±5°C)
			101 = 125°C (±5°C)
			110 = 135°C (±5°C)
			111 > 140°C (±5°C)
4:3	RV	0	R33 [4]: Reserved
			R33 [2]: VOUT_1.0V_OUTPUT_POWER_GOOD_STATUS
2	RO	0	VOUT_1.0V LDO Output Power Good Status
Z	ĸu		0 = Power Good
			1 = Power Not Good
1:0	RV	0	R33 [1:0]: Reserved

R34 - PEC/IBI/PARITY/HID_CODE				
Bits	Attribute	Default	Description	
7	RO	0	R34 [7]: PEC_ENABLE	

R34 - PE	R34 - PEC/IBI/PARITY/HID_CODE					
Bits	Attribute	Default	Description			
			Packet Error Code Enable (Applicable Only if R32 [6] = '1')			
			0 = Disable			
			1 = Enable			
			R34 [6]: IBI_ENABLE			
6	RO	0	In Band Interrupt Enable (Applicable Only if R32 [6] = '1')			
0		0	0 = Disable			
			1 = Enable			
			R34 [5]: PARITY_DISABLE			
5	RO	0	T Bit Parity Code Disable (Applicable Only if R32 [6] = '1'.)			
5	RU		0 = Enable			
			1 = Disable			
4	RV	0	R34 [4]: Reserved			
			R34 [3:1]: HID_CODE			
			PMIC's 3-bit HID Code			
			000			
			001			
3:1	RO	111	010			
0.1			011			
			100			
			101			
			110			
			111			
0	RV	0	R34 [0]: Reserved			

R35 - Err	R35 - Error Injection					
Bits	Attribute	Default	Description			
			R35 [7]: ERROR_INJECTION_ENABLE			
7	RW	0	Error Injection Enable			
1		0	0 = Disable			
			1 = Enable			
			R35 [6:4]: ERROR_INJECTION_RAIL_SELECTION			
	RW	0	Error Injection - Input Rail and Output Rail Selection			
			000 = Undefined			
			001 = SWA Output Only			
6:4			010 = Reserved			
0.4			011 = SWB Output Only			
			100 = SWC Output Only			
			101 = VIN_Bulk Input Only			
			110 = Reserved			
			111 = Do Not Use			
3	RW	0	R35 [3]: OVER_VOLTAGE_UNDER_VOLTAGE_SELECT			

Bits	Attribute	Default	Description
			Over-Voltage or Under-Voltage Selection for Bits R35[6:4]
			0 = Over-Voltage
			1 = Under-Voltage
			R35 [2:0]: MISC_ERROR_INJECTION_TYPE
			Miscellaneous Error Injection Type
		0	000 = Undefined
			001 = Reserved
2.0			010 = Critical Temperature Shutdown
2:0	RW		011 = High Temperature Warning Threshold
			100= VOUT_1.8V LDO Power Good
			101 = High Current Consumption Warning
			110 = Reserved
			111 = Current Limiter Warning

R36 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R36 [7:0]: Reserved		

R37 - DIMM Vendor Region Password Lower Byte			
Bits	Attribute	Default	Description
			R37 [7:0]: DIMM_VENDOR_MEMORY_REGION_PASSWORD_LOWER_BYTE
7:0	WO	0111 0011	DIMM Vendor Memory Region (R40 - R6F) Password - Lower Byte
			[7:0] = Code

R38 - DIMM Vendor Region Password Upper Byte			
Bits	Attribute	Default	Description
			R38 [7:0]: DIMM_VENDOR_MEMORY_REGION_PASSWORD_UPPER_BYTE
7:0	WO	1001 0100	DIMM Vendor Memory Region (R40 - R6F) Password - Upper Byte
			[7:0] = Code

R39 - DIN	R39 - DIMM Vendor Password Control				
Bits	Attribute	Default	Description		
			Host Region Codes:		
			0x74: Clear Registers R04 to R07, Erase MTP memory for R04 Register. DIMM Vendor		
			Region (R40 to R6F) Write Codes:		
			0x00: Lock DIMM Vendor Region.		
7:0	RW	0	0x40: Unlock DIMM Vendor Region. Password needs to be present in R37 & R38		
			registers.		
			0x80: Burn DIMM Vendor Region Password. New password needs to be present in R37		
			& R38.		
			0x81: Burn DIMM Vendor Region - R40 to R4F		

R39 - DIMM Vendor Password Control				
Bits	Attribute	Default	Description	
			0x82: Burn DIMM Vendor Region - R50 to R5F	
			0x85: Burn DIMM Vendor Region - R60 to R6F	
			DIMM Vendor Region (R40 to R6F) Read Codes:	
			0x5A: Burning is complete in DIMM Vendor region.	

R3A – De	R3A – Default Address Pointer				
Bits	Attribute	Default	Description		
7	RV	0	R3A [7]: Reserved		
			R3A [6]: DEFAULT_READ_ADDRESS_POINTER_ENABLE		
6	RW	0	Enable Default Address Read Pointer when PMIC sees STOP operation		
0		0	0 = Disable Default Address Pointer (address pointer is set by Host)		
			1 = Enable Default Address Pointer; Address selected by register bits [5:4]		
			R3A [5:4]: DEFAULT_READ_STARTING_ADDRESS		
		0	Default Read Address Pointer Selection when PMIC sees STOP operation		
5:4	RW		00 = R08		
5.4	1.00		01 = R0C		
			10 = Reserved		
			11 = Reserved		
			R3A [3:2]: BURST_LENGTH_FOR_READ_DEFAULT_ADDR_POINTER		
			Burst Length (# of Bytes) to be transferred for Read Default Address Pointer Mode		
3:2	RW	0	00 = 2 Bytes		
5.2	1.00	0	01 = 4 Bytes		
			10 = Reserved		
			11 = 16 Bytes		
1:0	RV	0	R3A [1:0]: Reserved		

R3B - Rev	R3B - Revision ID, PMIC Current Capability Selection					
Bits	Attribute	Default	Description			
7:6	RV	0	R3B [7:6]: Reserved			
			R3B [5:4]: REVISION_ID_MAJOR_STEPPING			
			Major Revision Stepping			
5:4	ROE	-	00 = Revision 1			
5.4	RUE		01 = Revision 2			
			10 = Revision 3			
			11 = Revision 4			
			R3B [3:1]: REVISION_ID_MINOR_STEPPING			
		-	Minor Revision Stepping			
3:1	ROE		000 = Revision 0			
3.1	RUE		001 = Revision 1			
			010 = Revision 2			
			011 = Revision 3			

R3B - Revision ID, PMIC Current Capability Selection				
Bits	Attribute	Default	Description	
			All other encodings are reserved.	
0	RV	0	R3B [0]: Reserved	

R3C - Vendor ID Byte0				
Bits	Attribute	Default	Description	
7:0	ROE	1000 0110	R3C [7:0]: VENDOR_ID_BYTE0	
			Vendor Identification Register Byte 0.	

R3D - Vendor ID Byte1				
Bits	Attribute	Default	Description	
7:0	ROE	1100 1000	R3D [7:0]: VENDOR_ID_BYTE1	
7.0	NOL	1100 1000	Vendor Identification Register Byte 1.	

R3E - Re	R3E - Reserved					
Bits	Attribute	Default	Description			
7:0	RV	0	R3E [7:0]: Reserved			

R3F - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R3F [7:0]: Reserved		

8.5.2 DIMM Vendor Region Registers

R40 - Pov	R40 - Power On Sequence Configuration 0					
Bits	Attribute	Default	Description			
			R40 [7]: POWER_ON_SEQUENCE_CONFIG0			
7	RWPF	1	PMIC Power-On Sequence Config0			
1	RVFE	I	0 = Do Not Execute Config0			
			1 = Execute Config0			
	RWPE	0	R40 [6]: POWER_ON_SEQUENCE_CONFIG0_SWA_ENABLE			
6			Enable Switch Node A Output Regulator.			
0			0 = Disable Switch Node A Output Regulator			
			1 = Enable Switch Node A Output Regulator			
5	RV	0	R40 [5]: Reserved			
			R40 [4]: POWER_ON_SEQUENCE_CONFIG0_SWB_ENABLE			
4	RWPF	0	Enable Switch Node B Output Regulator.			
4	RVFE		0 = Disable Switch Node B Output Regulator			
			1 = Enable Switch Node B Output Regulator			
3		1	R40 [3]: POWER_ON_SEQUENCE_CONFIG0_SWC_ENABLE			
3	RWPE	'PE 1	Enable Switch Node C Output Regulator.			

GD30MP1020

R40 - Po	R40 - Power On Sequence Configuration 0				
Bits	Attribute	Default	Description		
			0 = Disable Switch Node C Output Regulator		
			1 = Enable Switch Node C Output Regulator		
			R40 [2:0]: POWER_ON_SEQUENCE_CONFIG0_IDLE		
	RWPE	001	Idle time after Power-On Sequence Config0		
			000 = 0ms		
			001 = 2ms		
2:0			010 = 4ms		
2.0			011 = 6ms		
			100 = 8ms		
			101 = 10ms		
			110 = 12ms		
			111 = 24ms		

(Note: The R40[4] POWER_ON_SEQUENCE_CONFIG0_SWB_ENABLE setting need to be the same as SWA R40[6] in dual phase mode operation.)

R41 - Pov	841 - Power-On Sequence Configuration 1				
Bits	Attribute	Default	Description		
			R41 [7]: POWER_ON_SEQUENCE_CONFIG1		
7	RWPE	1	PMIC Power-On Sequence Config 1		
1	RVFE	I	0 = Do Not Execute Config		
			1 = Execute Command 1		
			R41 [6]: POWER_ON_SEQUENCE_CONFIG1_SWA_ENABLE		
6	RWPE	1	Enable Switch Node A Output Regulator.		
0	RVFE	I	0 = Disable Switch Node A Output Regulator		
			1 = Enable Switch Node A Output Regulator		
5	RV	0	R41 [5]: Reserved		
		1	R41 [4]: POWER_ON_SEQUENCE_CONFIG1_SWB_ENABLE		
4	RWPE		Enable Switch Node B Output Regulator.		
4			0 = Disable Switch Node B Output Regulator		
			1 = Enable Switch Node B Output Regulator		
			R41 [3]: POWER_ON_SEQUENCE_CONFIG1_SWC_ENABLE		
3	RWPE	1	Enable Switch Node C Output Regulator.		
5		I	0 = Disable Switch Node C Output Regulator		
			1 = Enable Switch Node C Output Regulator		
			R41 [2:0]: POWER_ON_SEQUENCE_CONFIG1_IDLE		
			Idle time after Power-On Sequence Config1		
			000 = 0ms		
2:0	RWPE	001	001 = 2ms		
			010 = 4ms		
			011 = 6ms		
			100 = 8ms		

R41 - Power-On Sequence Configuration 1				
Bits	Attribute	Default	Description	
			101 = 10ms	
			110 = 12ms	
			111 = 24ms	

(Note: The R41[4] POWER_ON_SEQUENCE_CONFIG1_SWB_ENABLE setting need to be the same as SWA R41[6] in dual phase mode operation.)

R42 - Power-On Sequence Configuration 2				
Bits	Attribute	Default	Description	
7	RWPE	0	R42 [7]: POWER_ON_SEQUENCE_CONFIG2	
			PMIC Power-On Sequence Config2	
			0 = Do Not Execute Config2	
			1 = Execute Config2	
	RWPE	0	R42 [6]: POWER_ON_SEQUENCE_CONFIG2_SWA_ENABLE	
6			Enable Switch Node A Output Regulator.	
			0 = Disable Switch Node A Output Regulator	
			1 = Enable Switch Node A Output Regulator	
5	RV	0	R42 [5]: Reserved	
	RWPE	0	R42 [4]: POWER_ON_SEQUENCE_CONFIG2_SWB_ENABLE	
4			Enable Switch Node B Output Regulator.	
			0 = Disable Switch Node B Output Regulator	
			1 = Enable Switch Node B Output Regulator	
	RWPE	0	R42 [3]: POWER_ON_SEQUENCE_CONFIG2_SWC_ENABLE	
3			Enable Switch Node C Output Regulator.	
5			0 = Disable Switch Node C Output Regulator	
			1 = Enable Switch Node C Output Regulator	
	RWPE	000	R42 [2:0]: POWER_ON_SEQUENCE_CONFIG2_IDLE	
			Idle time after Power-On Sequence Config2	
			000 = 0ms	
			001 = 2ms	
2:0			010 = 4ms	
			011 = 6ms	
			100 = 8ms	
			101 = 10ms	
			110 = 12ms	
			111 = 24ms	

(Note: The R42[4] POWER_ON_SEQUENCE_CONFIG2_SWB_ENABLE setting need to be the same as SWA R42[6] in dual phase mode operation.)

R43 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R43 [7:0]: Reserved		

R44 - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R44 [7:0]: Reserved		

R45 - SW	R45 - SWA Voltage Setting					
Bits	Attribute	Default	Description			
			R45 [7:1]: SWA_VOLTAGE_SETTING			
			Switch Node A Output Regulator Voltage Setting			
			000 0000 = 800mV			
			000 0001 = 805mV			
		0111100	000 0010 = 810mV			
7:1	RWPE					
			011 1100 = 1100mV			
			111 1101 = 1425mV			
			111 1110 = 1430mV			
			111 1111 = 1435mV			
		0	R45 [0]: SWA_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING			
0	RWPE		Switch Node A Output Threshold Low-Side Voltage For Power Good Status			
U			0 = -5% from the setting in "Register R45" [7:1]			
			1 = -7.5% from the setting in "Register R45" [7:1]			

R46 - SW	R46 - SWA Threshold and Soft stop Time				
Bits	Attribute	Default	Description		
			R46 [7:6]:		
			SWA_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING		
			Switch Node A Output Threshold High-Side Voltage "Upper bound" For Power Good		
7:6	RWPE	01	Status		
7.0	RWPE	01	00 = +5% from the setting in "Register R45" [7:1]		
			01 = +7.5% from the setting in "Register R45" [7:1]		
			10 = +10% from the setting in "Register R45" [7:1]		
			11 = +3% from the setting in "Register R45" [7:1]		
			R46 [5:4]: SWA_OVER_VOLTAGE_THRESHOLD_SETTING		
	RWPE		Switch Node A Output Regulator Threshold For Over-Voltage Status		
5:4		10	00 = +7.5% from the setting in "Register R45" [7:1]		
5.4			01 = +10% from the setting in "Register R45" [7:1]		
			10 = +12.5% from the setting in "Register R45" [7:1]		
			11 = +20% from the setting in "Register R45" [7:1]		
			R46 [3:2]: SWA_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING		
3:2	RWPF	00	Switch Node A Output Regulator Threshold For Under-Voltage Lockout Status		
3.2	RWPE		00 = -10% from the setting in "Register R45" [7:1]		
			01 = -12.5% from the setting in "Register R45" [7:1]		

GD30MP1020

R46 - SW	R46 - SWA Threshold and Soft stop Time				
Bits	Attribute	Default	Description		
			10 = -7.5% from the setting in "Register R45" [7:1]		
			11 = -20% from the setting in "Register R45" [7:1]		
	RWPE	11	R46 [1:0]: SWA_OUTPUT_SOFT_STOP_TIME		
			SWA Output Regulator Soft-Stop Time After VR Disable		
1:0			00 = 0.5ms		
1.0			01 = 1ms		
			10 = 2ms		
			11 = 4ms		

R47- Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R47 [7:0]: Reserved		

R48 - Reserved				
Bits	Attribute	Default	Description	
7:0	RV	0	R48 [7:0]: Reserved	

R49 - SW	249 - SWB Voltage Setting				
Bits	Attribute	Default	Description		
			R49 [7:1]: SWB_VOLTAGE_SETTING		
			Switch Node B Output Regulator Voltage Setting		
			000 0000 = 800mV		
			000 0001 = 805mV		
		0111100	000 0010 = 810mV		
7:1	RWPE				
			011 1100 = 1100mV		
			111 1101 = 1425mV		
			111 1110 = 1430mV		
			111 1111 = 1435mV		
		0	R49 [0]: SWB_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING		
0	RWPE		Switch Node B Output Threshold Low-Side Voltage For Power Good Status		
U			0 = -5% from the setting in "Register R49" [7:1]		
			1 = -7.5% from the setting in "Register R49" [7:1]		

R4A - SWB Threshold and Soft stop Time			
Bits	Attribute	Default	Description
7:6	RWPE	01	R4A [7:6]: SWC_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING Switch Node B Output Threshold High-Side Voltage "Upper bound" For Power Good Status

R4A - SW	R4A - SWB Threshold and Soft stop Time				
Bits	Attribute	Default	Description		
			00 = +5% from the setting in "Register R49" [7:1]		
			01 = +7.5% from the setting in "Register R49" [7:1]		
			10 = +10% from the setting in "Register R49" [7:1]		
			11 = +3% from the setting in "Register R49" [7:1]		
			R4A [5:4]: SWB_OVER_VOLTAGE_THRESHOLD_SETTING		
			Switch Node C Output Regulator Threshold For Over-Voltage Status		
5:4	RWPF	10	00 = +7.5% from the setting in "Register R49" [7:2]		
5.4	RWPE	10	01 = +10% from the setting in "Register R49" [7:1]		
			10 = +12.5% from the setting in "Register R49" [7:1]		
			11 = +20% from the setting in "Register R49" [7:1]		
			R4A [3:2]: SWB_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING		
			Switch Node C Output Regulator Threshold For Under-Voltage Lockout Status		
3:2		00	00 = -10% from the setting in "Register R49" [7:1]		
3.2	RWPE	00	01 = -12.5% from the setting in "Register R49" [7:1]		
			10 = -7.5% from the setting in "Register R49" [7:1]		
			11 = -20% from the setting in "Register R49" [7:1]		
			R4A [1:0]: SWB_OUTPUT_SOFT_STOP_TIME		
			SWC Output Regulator Soft-Stop Time After VR Disable		
1.0	RWPE		00 = 0.5ms		
1:0		11	01 = 1ms		
			10 = 2ms		
			11 = 4ms		

R4B - SW	R4B - SWC Voltage Setting					
Bits	Attribute	Default	Description			
			R4B [7:1]: SWC_VOLTAGE_SETTING			
			Switch Node C Output Regulator Voltage Setting2			
			000 0000 = 1500mV			
			000 0001 = 1505mV			
		0111100	000 0010 = 1510mV			
7:1	RWPE					
			011 1100 = 1800mV			
			111 1101 = 2125mV			
			111 1110 = 2130mV			
			111 1111 = 2135mV			
		WPE 0	R4B [0]: SWC_POWER_GOOD_THRESHOLD_LOW_SIDE_VOLTAGE_SETTING			
0	RWPE		Switch Node C Output Threshold Low-Side Voltage For Power Good Status			
0			0 = -5% from the setting in "Register R4B" [7:1]			
			1 = -7.5% from the setting in "Register R4B" [7:1]			

Bits	Attribute	Default	Description
			R4C [7:6]:
			SWC_POWER_GOOD_THRESHOLD_HIGH_SIDE_VOLTAGE_SETTING
			Switch Node C Output Threshold High-Side Voltage "Upper bound" For Power Good
		a (Status
7:6	RWPE	01	00 = +5% from the setting in "Register R4B" [7:1]
			01 = +7.5% from the setting in "Register R4B" [7:1]
			10 = +10% from the setting in "Register R4B" [7:1]
			11 = +3% from the setting in "Register R4B" [7:1]
			R4C [5:4]: SWC_OVER_VOLTAGE_THRESHOLD_SETTING
		10	Switch Node C Output Regulator Threshold For Over-Voltage Status
F .4	RWPE		00 =+7.5% from the setting in "Register R4B" [7:1]
5:4			01 = +10% from the setting in "Register R4B" [7:1]
			10 = +12.5% from the setting in "Register R4B" [7:1]
			11 = +20% from the setting in "Register R4B" [7:1]
			R4C [3:2]: SWC_UNDER_VOLTAGE_LOCKOUT_THRESHOLD_SETTING
			Switch Node C Output Regulator Threshold For Under-Voltage Lockout Status
3:2	RWPE	00	00 = -10% from the setting in "Register R4B" [7:1]
3.2	RVFE	00	01 = -12.5% from the setting in "Register R4B" [7:1]
			10 = -7.5% from the setting in "Register R4B" [7:1]
			11 = -20% from the setting in "Register R4B" [7:1]
			R4C [1:0]: SWC_OUTPUT_SOFT_STOP_TIME
1:0			SWC Output Regulator Soft-Stop Time After VR Disable
	RWPE	11	00 = 1ms
			01 = 2ms
			10 = 4ms
			11 = 8ms

R4D - SWA FSW & Mode					
Bits	Attribute	Default	Description		
			R4D [7:6]: SWA_MODE_SELECT		
			Switch Node A Output Regulator Mode Selection		
7:6	RWPE	10	00 = Reserved		
7.0		10	01 = Reserved		
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)		
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)		
	RWPE	00	R4D [5:4]: SWA_SWITCHING_FREQ		
			Switch Node A Output Regulator Switching Frequency (Note)		
F . A			00 = 750kHz		
5:4			01 = 1000kHz		
			10 = 1250kHz		
			11 = 1500kHz		

R4D - SW	A FSW & I	Mode	
Bits	Attribute	Default	Description
3:0	RV	0000	R4D [3:0]: Reserved

R4E - SW	B, SWC F	SW & Mod	l
Bits	Attribute	Default	Description
			R4E [7:6]: SWB_MODE_SELECT
			Switch Node B Output Regulator Mode Selection
7:6	RWPE	10 00 = Reserved 01 = Reserved	00 = Reserved
7.0	RWPE		01 = Reserved
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)
			R4E [5:4]: SWB_SWITCHING_FREQ
			Switch Node B Output Regulator Switching Frequency
5:4	RWPF	00	00 = 750kHz
5.4		00	01 = 1000kHz
			10 = 1250kHz
			11 = 1500kHz
		R4E [3:2]: SWC_MODE_SELECT Switch Node D Output Regulator Mode Selection	R4E [3:2]: SWC_MODE_SELECT
			Switch Node D Output Regulator Mode Selection
3:2	RWPE	10	00 = Reserved
5.2		10	01 = Reserved
			10 = COT; DCM (Constant on Time; Discontinuous Current Mode)
			11 = COT; Forced CCM (Constant on Time; Continuous Current Mode)
			R4E [1:0]: SWC_SWITCHING_FREQ
			Switch Node C Output Regulator Switching Frequency
1:0	RWPE	00	00 = 750kHz
1.0	1 X V I L	00	01 = 1000kHz
			10 = 1250kHz
			11 = 1500kHz

R4F - Pha	ase Mode S	Select	
Bits	Attribute	Default	Description
7:1	RV	0	R4F [7:1]: Reserved
			R4F [0]: SWA_SWB_PHASE_MODE_SELECT
0	RWPE	0	Switch Node A and Switch Node B Phase Regulator Mode Selection.
0			0 = Single Phase Regulator Mode
			1 = Dual Phase Regulator Mode

R50 - Out	put Currei	nt Limit	
Bits	Attribute	Default	Description
7:6	RWPE	00	R50 [7:6]: SWA_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING Switch Node A Output Current Limiter Warning Threshold Setting

R50 - Out	tput Currei	nt Limit	
Bits	Attribute	Default	Description
			For COT Mode, Ivalley_limit:
			00 = 5.0A
			01 = 5.5A
			10 = 6.0A
			11 = Reserved
5:4	RV	00	R50 [5:4]: Reserved
			R50 [3:2]: SWB_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING
			Switch Node B Output Current Limiter Warning Threshold Setting
			For COT Mode, Ivalley_limit:
3:2	RWPE	00	00 = 5.0A
			01 = 5.5A
			10 = 6.0A
			11 = Reserved
			R50 [1:0]: SWC_OUTPUT_CURRENT_LIMITER_WARNING_THRESHOLD_SETTING
			Switch Node C Output Current Limiter Warning Threshold Setting
			For COT Mode, Ivalley_limit:
1:0	RWPE	11	00 = 0.5A
			01 = 1.0A
			10 = 1.5A
			11 = 2.0A

R51 - LD0	O Voltage	Setting	
Bits	Attribute	Default	Description
			R51 [7:6]: VOUT_1.8V _VOLTAGE_SETTING
			VLDO_1.8V Voltage Setting:
7:6	RWPE	01	00 = 1.7V
7.0		01	01 = 1.8V
			10 = 1.9V
			11 = 2.0V
5:3	RV	000	R51 [5:3]: Reserved
			R51 [2:1]: VOUT_1.0V _VOLTAGE_SETTING
			VLDO_1.0V Voltage Setting:
2:1	RWPE	01	00 = 0.9V
2.1		01	01 = 1.0V
			10 = 1.1V
			11 = 1.2V
0	RV	0	R51 [0]: Reserved

R52-R57	- Reserved	ł	
Bits	Attribute	Default	Description
7:0	RV	0	R52 [7:0] - R57 [7:0]: Reserved

R58 - Pov	wer Off Sec	quence Co	onfiguration 0
Bits	Attribute	Default	Description
			R58 [7]: POWER_OFF_SEQUENCE_CONFIG0
7	RWPE	1	PMIC Power Off Sequence Config0
1	RWPE	I	0 = Do Not Execute Config0
			1 = Execute Config0
			R58 [6]: POWER_OFF_SEQUENCE_CONFIG0_SWA_DISABLE
6	RWPE	1	Disable Switch Node A Output Regulator.
0		I	0 = Do Not Disable Switch Node A Output Regulator
			1 = Disable Switch Node A Output Regulator
5	RV	0	R58 [5]: Reserved
			R58 [4]: POWER_OFF_SEQUENCE_CONFIG0_SWB_DISABLE
4	RWPE	1	Enable Switch Node B Output Regulator.
4		0 = Do Not Disable Switch Node B Output Regulator 1 = Disable Switch Node B Output Regulator	0 = Do Not Disable Switch Node B Output Regulator
			1 = Disable Switch Node B Output Regulator
			R58 [3]: POWER_OFF_SEQUENCE_CONFIG0_SWC_DISABLE
3	RWPE	0	Disable Switch Node C Output Regulator.
0		U	0 = Do Not Disable Switch Node C Output Regulator
			1 = Disable Switch Node C Output Regulator
			R58 [2:0]: POWER_OFF_SEQUENCE_CONFIG0_IDLE
			Idle time after Power Off Sequence Config0
			000 = 0ms
	001 = 1ms	001 = 1ms	
2:0	RWPF	001	010 = 2ms
2.0		001	011 = 3ms
			100 = 4ms
			101 = 5ms
			110 = 6ms
			111 = 7ms

(Note: The R58[4] POWER_OFF_SEQUENCE_CONFIG0_SWB_DISABLE setting need to be the same as SWA R58[6] in dual phase mode operation.)

R59 - Pov	ver Off Sec	quence Co	onfiguration 1
Bits	Attribute	Default	Description
			R59 [7]: POWER_OFF_SEQUENCE_CONFIG1
7	RWPF	1	PMIC Power Off Sequence Config1
1		I	0 = Do Not Execute Config1
			1 = Execute Config1
			R59 [6]: POWER_OFF_SEQUENCE_CONFIG1_SWA_DISABLE
6	RWPF	1	Disable Switch Node A Output Regulator.
0		I	0 = Do Not Disable Switch Node A Output Regulator
			1 = Disable Switch Node A Output Regulator

R59 - Pov	wer Off Se	quence Co	onfiguration 1
Bits	Attribute	Default	Description
5	RV	0	R59 [5]: Reserved
			R59 [4]: POWER_OFF_SEQUENCE_CONFIG1_SWB_DISABLE
4	RWPF	1	Enable Switch Node B Output Regulator.
4		I	0 = Do Not Disable Switch Node B Output Regulator
			1 = Disable Switch Node B Output Regulator
			R59 [3]: POWER_OFF_SEQUENCE_CONFIG1_SWC_DISABLE
3	RWPE	1	Disable Switch Node C Output Regulator.
3	RVFE	I	0 = Do Not Disable Switch Node C Output Regulator
			1 = Disable Switch Node C Output Regulator
			R59 [2:0]: POWER_OFF_SEQUENCE_CONFIG1_IDLE
			Idle time after Power Off Sequence Config1
			000 = 0ms
			001 = 1ms
2:0	RWPF	001	010 = 2ms
2.0		001	011 = 3ms
			100 = 4ms
			101 = 5ms
			110 = 6ms
			111 = 7ms

(Note: The R59[4] POWER_OFF_SEQUENCE_CONFIG1_SWB_DISABLE setting need to be the same as SWA R59[6] in dual phase mode operation.)

R5A - Po	wer Off Se	quence C	onfiguration 2
Bits	Attribute	Default	Description
			R5A [7]: POWER_OFF_SEQUENCE_CONFIG2
7	RWPF	0	PMIC Power Off Sequence Config2
7	RVFE	0	0 = Do Not Execute Config2
			1 = Execute Config2
			R5A [6]: POWER_OFF_SEQUENCE_CONFIG2_SWA_DISABLE
6	RWPF	0	Disable Switch Node A Output Regulator.
0	RWPE	0	0 = Do Not Disable Switch Node A Output Regulator
			1 = Disable Switch Node A Output Regulator
5	RV	0	R5A [5]: Reserved
		R5A [4]: POWER_OFF_SEQUENCE_CONFIG2_SWB_DISABLE	R5A [4]: POWER_OFF_SEQUENCE_CONFIG2_SWB_DISABLE
4	RWPF	0	Enable Switch Node B Output Regulator.
4		0	0 = Do Not Disable Switch Node B Output Regulator
			1 = Disable Switch Node B Output Regulator
			R5A [3]: POWER_OFF_SEQUENCE_CONFIG2_SWC_DISABLE
3	RWPF	0	Disable Switch Node C Output Regulator.
3	NVFE	VPE 0	0 = Do Not Disable Switch Node C Output Regulator
			1 = Disable Switch Node C Output Regulator

GD30MP1020

its	Attribute	Default	Description
			R5A [2:0]: POWER_OFF_SEQUENCE_CONFIG2_IDLE
			Idle time after Power Off Sequence Config2
			000 = 0ms
		000	001 = 1ms
2:0	RWPE		010 = 2ms
2.0	RVFE		011 = 3ms
			100 = 4ms
			101 = 5ms
			110 = 6ms
			111 = 7ms

(Note: The R5A[4] POWER_OFF_SEQUENCE_CONFIG2_SWB_DISABLE setting need to be the same as SWA R5A[6] in dual phase mode operation.)

R5B - Reserved						
Bits	Attribute	Default	Description			
7:0	RV	0	R5B [7:0]: Reserved			

R5C - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R5C [7:0]: Reserved		

R5D - SW	R5D - SWA Soft Start Time						
Bits	Attribute	Default	Description				
			R5D [7:5]: SWA_OUTPUT_SOFT_START_TIME				
			SWA Output Regulator Soft-Start Time After VR Enable				
	RWPE	PE 001	000 = 1ms				
7:5			001 = 2ms				
7.5			010 = 4ms				
			011 = 6ms				
			111 = 14ms				
4:0	RV	0	R5D [4:0]: Reserved				

R5E - SWB, SWC Soft Start Time						
Bits	Attribute	Default	Description			
		001	R5E [7:5]: SWB_OUTPUT_SOFT_START_TIME			
	RWPE		SWB Output Regulator Soft-Start Time After VR Enable			
7:5			000 = 1ms			
7.5			001 = 2ms			
			010 = 4ms			
			011 = 6ms			

GD30MP1020

R5E - SWB, SWC Soft Start Time					
Bits	Attribute	Default	Description		
	111 = 14ms		111 = 14ms		
4	RV	0	R5E [4]: Reserved		
2.4	RWPE	001	R5E [3:1]: SWC_OUTPUT_SOFT_START_TIME		
			SWC Output Regulator Soft-Start Time After VR Enable		
			000 = 1ms		
			001 = 2ms		
3:1	RWPE		010 = 4ms		
			011 = 6ms		
			111 = 14ms		
0	RV	0	R5E [0]: Reserved		

R5F-R6F - Reserved					
Bits	Attribute	Default	Description		
7:0	RV	0	R5F [7:0] – R6F [7:0]: Reserved		

9 Layout Guidelines and Example

Layout is very important in high frequency switching converter design. If designed improperly, the PCB could radiate excessive noise and contribute to the converter instability. Certain points must be considered before starting a layout for GD30MP1020. Figure 11, show the recommended layout guide for reference. In Figure 11, the top layer layout of GD30MP1020's EVB is demonstrated. It should be noticed that the components' size is considered and drawn in real relating size. Four inductors and one PMIC are on the same layer to avoid the necessary of phase node vias which can induce large phase ringing and EMI noise. Two bulk capacitors are placed at the same side the VIN pin for each rail. Place the small decoupling capacitor can help to filter out the high frequency voltage spike, reduce the phase ringing on phase pin. Bulk capacitors can provide prompt energy during output load transient. Most important thing is to keep away the noisy signal, like switching node, output caps' vias. Below are the key items of GD30MP1020's EVB layout.

- Make traces of the high current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VINA, VINB and VINC).
- The SW node encounters high frequency voltage swings so it should be kept in a small area. Keep sensitive components away from the SW node to prevent noise couple.
- The PGND pin should be connected to a strong ground plane for heat sinking and noise protection. For better power dissipation, adding thermal vias near PGND pin to connect between different layers is recommended.
- The ground of VIN is recommended to connect to AGND then connect to PGND layer through via.
- Place the decoupling capacitors as close as possible to the device pins (VIN and AGND).
- Differential routing the feedback traces for each rail and keep away from noisy signal on the EVB.
- The NC pins at the four corners are recommended to connect to PGND for better heat dissipation.
- For the dual-phase application, must put the output capacitors (COUTA and COUTB) as close as possible, and put the sense feedback node of SWA_FB_P at the center of VDD and VDDQ is needed.

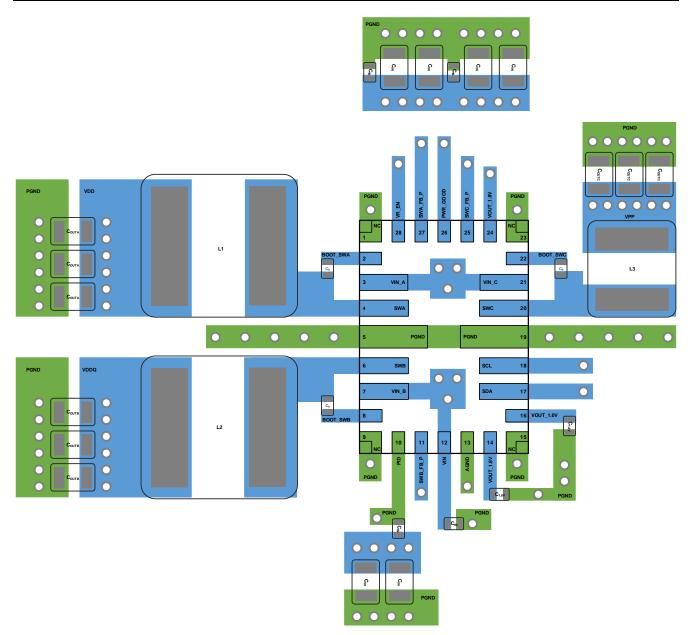
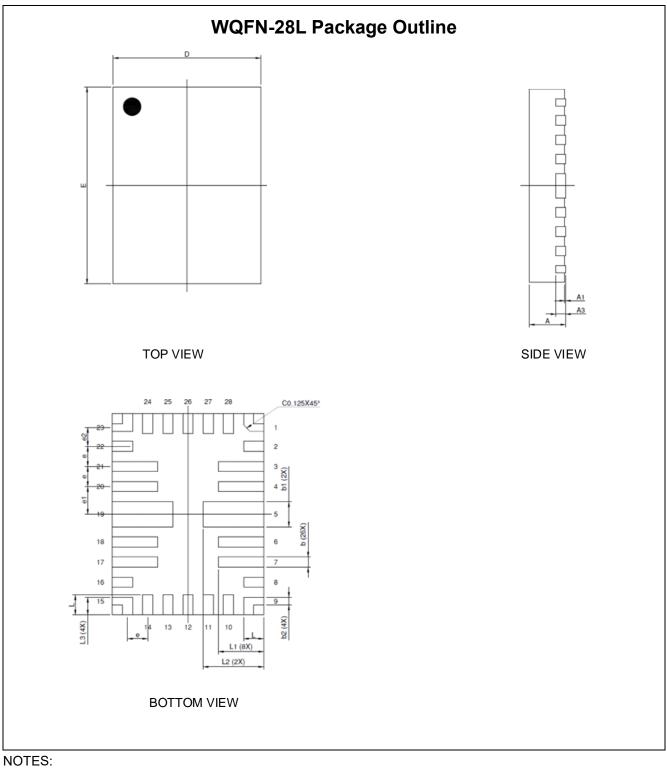



Figure 11. Typical GD30MP1020 Example Layout

10 Package Information

10.1 Outline Dimensions

- 1. All dimensions are in millimeters.
- 2. Package dimensions does not include mold flash, protrusions, or gate burrs.
- 3. Refer to the Table 11. WQFN-28L Dimensions(mm).

Table 11. WQFN-28L Dimensions(mm)

		x y		
SYMBOL	MIN	ТҮР	MAX	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3	0.203 REF			
b	0.15	0.20	0.25	
b1	0.45	0.50	0.55	
b2	0.10	0.15	0.20	
D	2.95	3.00	3.05	
E	3.95	4.00	4.05	
е		0.40 BSC		
e1		0.55 BSC		
e2		0.375 BSC		
L	0.35	0.40	0.45	
L1	0.85	0.90	0.95	
L2	1.15	1.2	1.25	
L3	0.30	0.35	0.40	

11 Ordering information

Ordering Code	Package Type	ECO Plan	Packing Type	MOQ	OP Temp(°C)
GD30MP1020GUTR-I	WQFN-28L	Green	Tape & Reel	3000	−10°C to +125°C

12 Revision History

REVISION NUMBER	DESCRIPTION	DATE
1.0	Initial release and device details	2024
1.1	Modiy SWA、SWB、SWC Current Limit	2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advancedlighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 GigaDevice - All rights reserved